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Abstract

Optical snow, introduced in [4], is a new category of motion for highly cluttered scenes in which
no spatial continuity can be assumed. Since no smoothness constraint can be imposed on the velocity
field, traditional optical flow methods can no longer be used [1]. However, a model of optical snow
has been proposed in [5] and algorithms based on this model were suggested using an analysis in
the spatio-temporal frequency domain [5, 2]. This model assumes lateral motion and can be used to
solve the 3D camera motion problem by decomposing sequences in sufficiently small patches [7]. We
would like to use the same model to find arbitrary camera motions globally instead of using patches.
In the present paper, we introduce a complementary model for purely non-lateral optical snow. The
standard optical snow model and this complementary form could lead to a new global approach for
solving the general egomotion problem. We show how non-lateral optical snow sequences can be
rectified such that standard methods to analyze optical snow can be applied. The effectiveness of the
method is shown for both real and synthetic sequences.
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1 Introduction

Most studies assume a unique velocity at each point in the visual field [1]. This assumption is only valid
if the depth map is continuous. If an observer moves in a 3D highly cluttered scene, a forest for instance,
this assumption no longer holds; branches and leaves at many depths cause discontinuities in the motion
field. Such cases can be solved by a human observer [10]. However, these scenes are hard to solve since
feature points cannot be tracked and since traditional optical flow methods cannot be expected to recover
an image velocity.

Recently, [4] introduced a new category of movement called optical snow which generalizes optical
flow by abandoning assumptions of spatial continuity. A model to analyse optical snow induced by all
one-parameter set of velocities has been proposed in [5]. Taking the whole sequence in consideration,
this model allows for lateral observer motions only [5]. Since the image velocity field can locally be
approximated as a sum of two fields, a parallel field due to camera translation and a constant field due to
camera rotation [9, 7], it was showed in [7] that this model could be used to recover 3D egomotion by
subdividing the image sequence in sufficiently small patches.

We suggest a more global approach without the use of patches. In this paper, we analyze purely non-
lateral observer motions and present a method to rectify these sequences such that standard optical snow
methods can be applied. Finally, we give some experimental results.
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Figure 1: (a) Bowtie signature in the frequency domain (b) Eigenbasis of bowtie signature

2 Previous works

2.1 Optical Snow

The model of optical snow defined in [4, 5] is an extension of the motion plane property [11] which
states that an image pattern translating with uniform image velocity produces a plane of energy in the
frequency domain. Formally, let

�����
	���	���
be a time varying image. If an image patch is translating by������	������

, we know from [3] that this velocity is constrained by

����� �� ��� ����� �� ��� � �� ���� (1)

This constraint, transposed in the Fourier domain, yields the following equation:

 "!�#�$ �����&%�� � ���'%�� � %�()� $+*���,%���	-%��&	-%�(.� ��� (2)

where *���,% � 	-% � 	-% ( � is the Fourier transform of
�/�,% � 	-% � 	-% ( �

. As noted in [5], equation 2 implies that
all frequencies *�����
	���	���10�2� lie on the plane����%�� � ����%�� � %�( ����3 (3)

This model was extended in [4] for the case in which there is a one-parameter set of velocities within
an image region, i.e. where velocities vary according the following equation:��� � 	�� � � � ��4 � �65  � 	�4 � �65  � � (4)

where
4���	�47�8	�)��	�9�

are constants and 5 depends on the visible depth at point (x,y) [5].
Substituting Eq. 4 into Eq. 3 yield a family of planes in the frequency domain,��47� �65 9�8�:%�� � ��4�� �65 9���:%�� � %�( �2��3 (5)

Thus, this model produces a set of planes in the frequency domain. This set of planes forms a bowtie
(see Fig. 1) and follows the two following propositions:

Proposition 1: The planes of the bowtie intersect at a common line, called the axis of the bowtie, that
passes through the origin.
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Proposition 2: The axis of the bowtie is in direction
�   � 	� � 	�4 �  �  4 �  � � 1. By normalizing

�� � 	� � �
,

this direction becomes
�  ��&	�9��	';=<>; ?A@CBD�CEF��� , where

E
is the angle between vectors

�����	�9���
and

��4���	�47���
.

Applied to the egomotion problem, it was noted in [5] that Eq. (4) corresponds to�����G	������ � �  IH � �65 )��	 H � �65 9��� (6)

In other words, camera rotation generates a constant velocity component
�  JH �&	 H �K� for small field of

views ( L ! �&M ) and lateral translation
�����	�9���

generates a velocity inversely proportional to depth. Com-
ponents HON and

 N were assumed to be 0. Therefore, this model cannot recover arbitrary camera motions.
The main contribution of this paper is to show that complementary camera motions, i.e. following

components H�N and
 N (all other components assumed to be 0), produce non-lateral optical snow se-

quences that can be rectified to be analyzed by existing optical snow methods. We will describe how to
find components H N and

 N .
3 Motion Field

The motion field equation contains 7 variables which are the depth P N at each pixel, the translation vector�� � 	� � 	� N � and the rotation vector
� H � 	 H � 	 H N � .

More precisely, the velocity field for a pixel (x,y), as defined in [6], is:������	������.Q � RTS � S � H �  �:U � S �� � H � � S � H
N ��VXW (ZY[ Y  ( W[ Y�:U � S �� � H �  S � S � H �  S � H N � VX\ (ZY[ Y  ( \[ Y^]
By assuming that only P N ,  N and HON are non-zero, we are left with:������	������.Q � R S � HON ��VXW (ZY[ Y S � H
N � VA\ (ZY[ Y ]
Note that rotation component H_N is perpendicular to translation component

 N for each pixel (x,y), and
that H N is independent of depth. From this observation, rectification is performed on image sequences to
obtain optical snow motion

� � 	 H_N � �65 �� N 	 � � .
3.1 Motion Field Rectification

The rectification is a polar transformation around the FOE [8] which is the image center in our case.
First, we rectify the motion field induced by pure H`N rotation. Consider a point

S
located in the image

at (1,0) on the camera projection plane (see Fig. 2-a). The path followed through time by
S

for a pureH
N movement is a circle of radius 1, and its speed is exactly equal to
; HaN ; . The rectification is done by

“unfolding” images such that this circle becomes straight and vertical, as shown in Fig. 2-b. For a field
of view of b�� M and images of size cedfc , the vertical length of the rectified image is !�#1g � � # c pixels.
Note that flow lines of a pure forward motion become horizontal. The velocities in the rectified motion
field correspond to

���Gh� 	��Kh� � Q � � 5  NKi S �� � S �� 	 H N � Q .
Standard optical snow produces velocites that only depend on depth. However, the velocities in recti-

fied non-lateral motion sequences vary according to depth and to image position. Therefore, horizontal
lines in the rectified sequence must be resampled according to factor

�j VAkWml VAk\ , where (
S �

,
S �

) is the posi-

tion of a pixel on the camera projection plane in the original sequence. In theory, we get infinite sampling
at center (0,0). In practice, we do not rectify near the image center as illustrated in Fig. 2-c. Notice that
image corners are cut to remove empty spaces in the rectified sequence.

1For simplicity, all equations in this paper assume image sequences of equal dimension in space and time.
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(a) (b)

(c) (d) (e)

Figure 2: (a) Original motion field (b) Rectified motion field (c) Rectified region of the original sequence
(d) Original frame (e) Rectified frame

3.2 Finding rotation n N
The bowtie axis can be computed from the rectified sequence using Principal Components Analysis as
described in [2]. For standard optical snow, the angle

E
in the bowtie axis equation (see Proposition 2) is

unknown. For non-lateral optical snow, however, we know that
E �2b��oM . Hence, the bowtie axis equation

becomes
� � 	XU�	 HON � . Thus, the third component of the bowtie axis gives us HaN directly with speed given

in pixels/frame in the rectified sequence. The rotation given in degrees, for a field of view of b��/M , is thenp�q �sr Yt g .
The bowtie axis can also be found using the best fit plane [2]. Let

��B_��	�Bu�&	�B N � be the normal of the
best fit plane # . Since

 N is the only component affected by depth, the bowtie axis is the line on the best
fit plane in direction

� � 	XU�	  wv \v Y � .
3.3 Finding translation x N
From Eq. 5, and since

 N generates only horizontal velocities and H`N only vertical velocities, planes form-
ing the bowtie have equation

� 5  N 	 HON 	XUA� . The best fit plane # is defined as
� v Wv Y 	 v \v Y 	XUA� � � 5  N 	 H
N 	XUA� ,

where 5 is the weighted “average” of the slopes of the motion planes that compose the bowtie. The
weights depend on depth distribution in the scene as well as image contrast contributed by each object.
Since this information is unknown, we can only compute

 N up to a scale factor 5 .

4 Experimental results

To evaluate our method, we rendered several synthetic image sequences of scenes containing lambertian
spheres (see Fig. 3-a). Image motion was generated by moving a camera ( b��oM field of view) through the
scene with various

 N and HON parameters.
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Table 1 shows results for various rectified sequences. The last two rows correspond to real image
sequences, respectively the lab sequence (see Fig. 3-b) and the plants sequence (see Fig. 3-c). The HJN
component is found almost exactly. The running time is about 1.6 seconds for 128x128x32 sequences
on a 1.3GHz AMD Athlon machine.

(a) (b) (c)

Figure 3: (a) Synthetic scenes were constituted of small balls at different depths (64 frames of size
128x128 pixels). (b) Lab sequence taken from a camera rotating around the z-axis (40 frames of 128x128
pixels). (c) Plants sequence taken from a camera making a forward motion (32 frames of 128x128 pixels).

Table 1 : Results for synthetic and real scenes
True Rotation True Translation Rotation Found Translation Found
(degrees/frame) (pixel/frame) (up to a scale factor)

0.00 1.00 0.00 0.15
1.80 0.00 1.78 0.00
1.80 1.00 1.81 0.22y ��3=z�� y ��3{��� 0.35 -0.05y ��3{��� y ��3=|�� 0.00 0.31

4.1 Comparing the eigenvalues

When analyzing image sequences globally, we would like to estimate how well the motion fits the optical
snow model, i.e. if a bowtie is present. For instance, an unrectifed forward motion or a rectified lateral
motion do not produce a bowtie signature. For such cases, the motion field features velocities oriented
in all directions. Detecting these situations would be a great benefit.

In [2], depth range is evaluated by comparing the two largest eigenvalues of the Principal Components
Analysis method. We can adapt this measure to detect the presence of a bowtie. The ratio of the first two
eigenvalues } � and } � has a maximum of 1 and should decrease as we get closer to a bowtie signature. In
fact, the presence of a bowtie creates a high power concentration along its axis which increases the first
eigenvalue. The absence of a bowtie is caracterized by a uniform power distribution which makes } � and} � almost equal. Fig. 4-a shows a plot of ~ k~�� as a function of � ( Y �� Q � for rectified sequences. As expected,

the ratio falls off as the bowtie takes shape in the frequency domain. Fig. 4-b shows ~ k~�� as a function of� (ZY �� Q � for non-rectified sequences. As expected, it increases linearly up to 1 as bowtie signature disappears.
The sequences used for these graphs have random translation vectors of unit length.

Notice that the curve in Fig. 4-a decreases non-linearly while the other one is linear. This might be
caused by the subsampling during rectification which accentuates the effect of any lateral motion. This
is still under investigation. These curves, if modelled correctly, would allow merging non-lateral and
lateral motions analysis into a general egomotion estimation algorithm.
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Figure 4: (a) ~ k~�� as a function of � (ZY �� Q � for rectified sequences. It starts at 1 and decreases as a bowtie

signature takes shape. (b) ~ k~ � as a function of � (ZY �� Q � for non-rectified sequences. It increases linearly up to
1 as bowtie signature disappears.

5 Conclusion

This paper presented a method to analyze purely non-lateral optical snow by introducing a rectification
process. Results show its accuracy and efficiency. We hope to solve the general egomotion problem in a
global approach using this scheme.
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