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Abstract

We present a 3D reconstruction technique based on the maximum-flow for-
mulation. Starting with a set of calibrated images, we globally search for the
most probable 3D model given the photoconsistency and the spatial continu-
ity constraints. This search is done radially from the center of the reconstruc-
tion volume; therefore imposing a radial topology. The fact that cameras are
arbitrarily positioned around the scene presents challenges for managing oc-
clusion, especially when applying global smoothing. We solve this problem
by proposing an iterative occlusion management mechanism, and a new way
of looking at surface smoothing and discontinuities that takes photoconsis-
tency into account. Experiments show that our method is relatively fast and
robust when dealing with simple objects, even in noisy conditions.

1 Introduction

The problem of passive 3D reconstruction — building a 3D model from a series of cali-
brated images of a scene — is of great interest in the context of 3D modeling. In theory,
this should simply be an extension of the classic stereoscopy problem, which uses the
principle of parallax to find the depth of the elements of a scene. In practice, this exten-
sion from stereoscopy to a more general camera setup is far from trivial because of the
large discrepancy between views, a problem unknown to standard stereo. One obvious
stereo-based approach to full volumetric reconstruction is to use two cameras at a time to
construct several stereoscopic depth maps and to merge them in a single model. However,
this merging process is difficult, especially when the depth maps are noisy. In this paper,
our goal was to get rid of this step and go straight from the color matching function to a
full 3D geometry. In order to do this, we chose to expand a successful stereoscopy ap-
proach, the graph-based energy minimization technique, to the volumetric problem and
to propose innovative solutions to the occlusion and smoothing problems.

1.1 Energy-based methods i1/, D stereoscopy

Energy-based approaches have been widely used in cldgsid &tereoscopy. The basic
idea is to define an energy functional which will be minimal for a 3D reconstruction that
best satisfies the matching criteria. These techniques are especially suited to multiple



camera problems because they can easily be expanded to accommodate extra terms or
configurations. However, this flexibility is offset by the difficulty in finding a minimum:
the more complex the energy function, the harder it is to minimimize it.

The energy function is generally composed of two terms: a matching term which
measures how well the solution represents the input images, and a smoothing term which
encourages spatial continuity. Other terms can be added to represent additional contraints,
at the expense of computational complexity. Different mathematical approaches can be
used to solve the energy function. The most generic method is simulated annealing [1],
but this method has not been widely used because it tends to be very slow and does not
converge to a global minimum. Graph-based methods like belief propagation [11], graph
cuts [1] and maximum flow [10] techniques have been proven more efficient and reliable
for finding a solution to the stereo problem. These methods are particularly well-suited
for problems featuring local dependencies, such as spatial continuity, for instance the
stereo problem. On the other hand, they do not handle occlusion very well because of its
long-range interactions and its dependence on 3D geometry.

1.2 Photoconsistency-based volumetric reconstruction techniques

The standard in photoconsistency-based volumetric reconstruction is the space carving
technique introduced by Kutulakos and Seitz [7]. The basic idea is to scan the recon-
struction volume along specific axes and to determine the opacity and the visibility of
the voxels following a strict order. Only cameras located behind the current position of a
scanning plane can be used in the cost function; the others are assumed to be occluded.
Voxels for which the cost function is higher than a certain threshold will be "carved”,
revealing voxels behind them which can then be evaluated similarly. No local smoothing
is imposed on the surface, so this method tends to yield disconnected solutions, especially
when noise is present. Furthermore, the choice of a suitable threshold is a challenge in
itself. In addition, methods based on space carving methods are greedy in nature: the
decision to carve a voxel is final and it can only be based on the matching cost of the
voxel under study.

Despite these pitfalls, approaches based on space carving have been widely used in
3D reconstruction and several improvements to the basic method have been proposed.
The generalized voxel coloringechnique [2] proposes a different camera management
strategy that allows more cameras to be used than in classic space carvapprdgi-
mate n-view steredutulakos [6] introduces a more robust cost function, that takes into
account not only the projected pixels but their neighbours as well, This refinement makes
the space carving method much more resistant to image and calibration noise. Another
possible improvement is to reduce the calculation time and memory expense by using an
octree representation for the reconstruction volume [9].

1.3 Hybrid techniques

Some hybrid techniques have been proposed to combine the advantages of energy-based
approaches and the occlusion management of space carving. Kolmagtoahv [5]

model the reconstruction problem as an energy minimization function which contains
three terms: the usual matching and smoothing terms, and an additional visibility term
that makes the cost of a solution infinite if it is inconsistent with the visibility data.



Unfortunately, the resulting cost function is highly discontinuous and cannot be solved
without introducing several simplifications. The visibility modeling seems applicable to
stereoscopic scenes with minimal occlusion, but it is unlikely that it could be successfully
extended to the fully volumetric problem [3]. Vogiatasal. [12] start from an initial sur-

face and deform it radially to reconstruct their final model. The optimal displacement for
each surface element is computed with the belief propagation algorithm [13], allowing
the introduction of a smoothing constraint. Unfortunately, in their approach, occlusion
can only be estimated from the initial surface — which means that the results are highly
dependent on the quality of that solution — and only synthetic volumetric results have been
provided so far.

2 Algorithm

2.1 Reconstruction volume

Reconstruction volumes can be divided into two categories. On one side, we find the
purely volumetric approach where the reconstruction space is divided into evenly spaced
cubic voxels. The reconstruction problem can then be solved by assigning a state - filled
or empty - to each voxel. This is an elegant but costly approach since every unit must
be evaluated independently in order to find a solution. On the other side, height-field
approaches try to reduce the search space by using an initial surface and finding the dis-
placement normal to that surface that best represents the scene. In classic stereoscopy, this
surface is a plane but as Vogiatzisal. [12] have shown, we can generalize the method

to arbitrary surfaces. The pitfall of this approach is that the displacement from the initial
surface must be very small for two reasons: first, the visibility calculation depends on this
initial surface, so large displacements will create occlusions not managed by the visibility
algorithm, and second, auto-intersection problems may occur when the displacement is
significant with respect to the curvature of the surface (figure 1).

We propose an "onion-shaped” reconstruction volume instead, i.e. a spherical vol-
ume divided into layers of uniform thickness (figure 2). Each layer is tesselated quasi-
uniformly and a voxel is formed around each vertex of the resulting mesh. Excluding the
scale factor, the tesselation is the same for each layer. This means that we can define a
visiting order from the exterior to the core of the volume that passes througH'thexel
of each layer. We can also define neighbourhood relationships between voxels of a layer.

The volume we use is a hybrid between both techniques: it still relies on some initial
knowledge of the scene but allows for large variations from that initial topology. As in
volumetric reconstruction, the whole search space is discretized in small volumetric units.
However, these voxels are not cubic nor uniformly sized. They are aligned along vectors
coming out of a central point, which means that our volume can be seen as a specific case
of a height-field on a spherical surface. The use of a very specific surface means that
we avoid auto-intersection problems even with very large displacements from the initial
surface. On the other hand, we are limited to objects featuring a radial topblogy

1An object is defined as having a radial topology if there is a poiotlled the center, such that all the rays
r starting from it cross the object’s surface only once.
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Figure 1: The auto-intersection Figure 2: Our reconstruction vol-

problem in height-field approaches Ume: spherical layers are embedded
with a large displacement from the inoneanother, and a voxelis formed

initial surface. around each vertex of the tesselated
sphere.

2.2 Energy function and graph representation

We propose to solve the reconstruction problem by finding the minimum of an energy
function of the formE(f) = Egata( f) + Esmoothnessf ), WhereEgaa( f) which denotes the
"matching cost” anEgmoothnesst) the "smoothing cost”. Our strategy is to use a max-
imum flow/minimum cut algorithm [10], although other energy minimization methods
could be used. This is done by building an undirected graph composed of a spurce

a sinkt and a network of nodes and edges such thatsngut of the graph represents

a valid closed reconstruction surface. Moreover, the capacity of the edges is chosen so
that finding the cut with the minimum total edge cost corresponds to finding the surface
minimizing our energy function. In our case, we form the graph by associating a node to
each voxel of the reconstruction volume, with smoothing edges between voxels of a layer,
and interlayer edges along the paths to the core where thé &nkcated. By pushing

flow from the exterior of the spherical graph to its core, we find the area where the flow
saturates, which corresponds to the best reconstruction surface. More formally, given a
reconstruction volume witD layers ofN vertices per layer, the grafih(V, E) consists in:

V={(ad)|1<a<N,1<d<D}u{st} (1)
E = Esmoothnesy) Ematchingd EsourceJ Esink - Where
Esmoothness= {((a,d)(b,d)) | 1<a<NbeN1<d< D}
Ematching= {((a,d)(a,d+1))[1<a<N,1<d<D-1}
Esource={(S,(a,D)) [ 1<a< N}, Esnk={((a,1),t)|1<a<N}
ANz is the layer neighbourhood of vertex 2)

2.3 Spatial smoothing in a volumetric context

The next step of our algorithm is to define the capacity of the edges of the graph. In graph-
based 2/> D stereoscopy, interlayer edges implement the matching cost while smoothing
edges implement the bias for spatial continuity. It is typical to consider that this bias

is identical everywhere and to use a constant value for the capacity of the smoothing
edges. Some researchers have experimented with techniques which modulate the capacity
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of those edges with data from the reference image, for instance the presence of a 2D
contour at that location that makes the presence of a spatial discontinuity more likely [1].
However, this kind of method does not generalize well to the volumetric case, where there
is no "reference” image.

We choose a truly volumetric approach instead, which is based on the observation that
in our mathematical model, all the edges that are part of the minimum cut are associated
with a small segment of the reconstructed surface. In classic stereoscopy, we assume that
the final scene is composed of fronto-parallel planes, and that the surface elements that
link them across discontinuities, i.e. the surface elements associated with the smooth-
ing edges, are invisible from most cameras (Figure 3a ). This hypothesis holds true as
long as the distance between the cameras is small and the number of cameras is limited.
However, in a typical volumetric scene, the cameras are arranged in such a way that every
element of the surface can be seen properly from several points of view, even the elements
associated with smoothing edges. Therefore, it makes sense to incorporate the available
photoconsistency information to make a good decision concerning these edges, and not
penalizing discontinuities consistent with the color data. (Figure 3b).

Let us assume that a cost functioevaluating the photoconsistency of voxels is de-
fined, taking occlusion into accourtthbeing small for good matching costs. We propose
such a cost function in the next section, but the solving method can be used with any
cost function respecting the previous criteria. We will directly use the value of the cost
function at a voxel for the capacity of the interlayer edge which emerges from it. The
capacity of the smoothing edges will depend on the average cost of the two voxels they
link, multiplied by a factor representing the amount of smoothness of the reconstruction.
Since the radial distance between the layers is constant, it is not necessary to model the
distance between voxels in the capacity of interlayer edges. The smoothing edges, on
the other hand, must take it into account: we assume that closer voxels should be more



interrelated than distant ones, so we divide the base capacity of the smoothing edges by
the distance between them. Hence, the final edge capacity is (figure 3c and d):

* if (U,V) € Esource
i c(u) if (u,v) € Esink
capaciy) = c(u) if (U,V) € Ematching (3)
mw if (U,V) € Esmoothing

wherec(x) is the cost of the voxel associated with nod& is a factor which determines
the amount of smoothingyy is the 3D position of the center of voxeland |||| is the
Euclidian norm.

2.4 Cost function and occlusion model

It is a well-known fact that in volumetric reconstruction, occlusion is omnipresent and
must be modeled explicitly [5]. We have seen earlier that approaches based on space
carving deal with visibility sequentially. If we want to solve the problem globally, a
different occlusion management approach will be necessary. One alternative is to add a
visibility term inside the cost function, as done in Kolmogosetwal, but this increases the
complexity of the energy function significantly and makes the problem almost intractable.
A more practical option is to consider the problem iteratively, using a previously obtained
surface as an approximate solution to determine visibility [8, 4]. However, this approach
leads to a chicken-and-egg dilemma: we need a first solution to determine the visibility,
but we need the visibility to reconstruct this first solution.

This forces us to rely on the simplifying assumption that there is initially no occlu-
sion. We have observed that even though it is an incorrect assumption, it is sufficient to
reconstruct an initial coarse reconstruction that roughly represents the scene. We then
use this coarse reconstruction to evaluate the visibility and to eliminate a subset of the
cameras which we judge to be occluded. Occlusion is measured by rendering the current
solution from a camera’s point of view and using the depth buffer to evaluate the depth of
the surfacez (figure 4). If this surface is placed in front of the voxel we are examining,

i.e. Zsol < Zyoxel, WE @ssume that this camera is in occlusion with respect to this voxel and
that the magnitude of this occlusion is proportional to the distance between the voxel and
the surfacezso — Zoxell-

Of course, our confidence in the initial solution is limited, so we must be conservative
in our camera elimination. In order to guarantee convergence in a set number of iterations,
it is also suitable to make this process permanent: once a camera has been eliminated for
a given voxel, it will never contribute again to its cost function. After a certain number
of cameras (one, in our tests) have been eliminated, we recreate a more refined solution
with the energy minimization algorithm. In theory, we could iterate like this until no more
cameras can be eliminated, or only two cameras remain. However, empirical results have
shown that five to ten iterations are sufficient to produce a good reconstruction. We com-
plement this iterative mechanism with a robust measure of photoconsistency that helps
produce a reasonably good reconstruction even when visibility information is erroneous.
Each voxel is projected into all the cameras from which it is visible; all the intensity val-
ues are then compared two by two and the minimum color distance between two values is
used as our cost function. Explicitly:



c(v) = min|li(v) =1 (V)| (4)

wherec(v) is the cost of voxel andly(v) is the average color of voxelwhen projected
into imagen.

Naturally, this function is too simplistic to produce a good reconstruction: it yields
very rough data with a lot of uncertainty, especially in the first few iterations when little
or no camera visibility information is used. However, the maximum flow algorithm deals
very well with this kind of data, yielding a coarse but smooth and well-formed solution.
Also, this cost function generally deals well with specularities, though it is based on the
assumption that the object surface is lambertian, because specularities will be treated as
outlier samples. One the other hand, the method is very sensitive to uniform backgrounds,
therefore it is advisable to design a scene with highly textured backgrounds or to pre-
process the images with a random background. The latter approach was used in this
paper.

3 Experimental results

The results were generated at two different resolutions: the low resolution volume is
composed of 50 layers of 2 562 vertices each, for a total of 128 100 voxels, and the high
resolution volume of 40 layers of 10 242 vertices each, for a total of 409 680 voxels. At

our highest resolution, the unoptimized calculation typically required 30 to 40 minutes

(on a 1.60 GHz Pentium M processor), and most of this time was spent on the projection
of the voxels and the computation of the cost function. We observed that the computation
time is linear with respect to the number of voxels.

3.1 Synthetic scenes

A first series of tests was conducted with synthetic images generated in OpenGL. These
images represent a best-case scenario for our algorithm: the objects have a simple geom-
etry that features a radial topology for the most part, their surface is perfectly lambertian
and well-textured, and the cameras are placed fairly evenly on the surface of a sphere
that encompasses the reconstruction volume. Two such results are presented here. Figure
5 presents a high-resolution reconstruction of a relatively complex model: we can see
that the details of the surface are well recovered, except in the regions where the radial
topology constraint is not respected (mostly on the character’s pacifier). There is some
sampling noise on the surface, but it should be easily reduced by increasing the resolu-
tion of the surface. Figure 6 shows the impact of the edge capacity model described in
section 2.3 on a low-resolution reconstruction. We observe that the results on the right,
obtained with our new smoothing approach, present much more accurate edges while
smooth surfaces have approximately the same amount of noise. This is due to the fact
that the smoothing is non-uniform, and that the discontinuities on the edges of the model
are consistent with the color data, and therefore not penalized the way noise peaks would
be. In both cases, we used a smoothing factor of 0.005. In fact, we observed that this
smoothing factor is independent from the resolution of the scene, and that the same factor
yields good results for a wide variety of scenes.



Figure 5: Synthetic results: two views of theaggiemodel with their corresponding high
resolution reconstruction.
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Figure 6: Impact of the capacity of the smoothing arcs: a) original view otémon

model b) reconstruction with the traditional approach in which only distance between
nodes influences the smoothing c¢) low resolution reconstruction with our new formu-
lation for the smoothing arcs capacity, which takes photoconsistency into account. The
resolution and average capacity of the smoothing arcs is the same for both reconstructions.

3.2 Realimages

Our second series of tests were conducted with digital photographs taken under real-life
conditions®. Sixteen images were taken with a turntable setup under uniform lighting.
All cameras were located slightly below the center of gravity of the model, in a circular
configuration, and they were calibrated with Tsai’s algorithm. The calibration presents
reprojection errors of-0.5 pixels. As stated earlier, images were manually segmented and
arandom color was applied to their background. We used the same volume and smoothing

2Images curtesy of Kyros Kutulakos, from the University of Toronto
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Figure 7: Two views of thgargoylemodel with corresponding reconstruction. We ren-
dered the reconstructed model by associating to each vertex the average projected color
of the corresponding voxel.

factor as for thanaggiesynthetic sequence. Results are shown in figure 7. Note that due
to the radial topology constraint, only the head of the gargoyle was reconstructed.

4 Conclusion

In this paper, we have proposed a new energy-based formulation for the volumetric recon-
struction problem based on the retrieval of a minimum cut in a spherical graph. We pre-
sented a new strategy for dealing with surface discontinuities that allows uneven smooth-
ing depending on the photoconsistency of the voxels that form this discontinuity. Thanks
to this strategy, we are able to distinguish accurately between noise peaks and actual sur-
face discontinuities, and to prevent over-smoothing. We also presented a new way of
dealing with occlusion, inspired in part by the works of Nakanetral. [8] and Kanget

al. [4] in classic stereo, which refines the visibility information iteratively.

The main limitation of our algorithm is clearly the radial topology constraint. A few
avenues have been explored to sidestep this problem — namely the use of deformable
reconstruction volumes and multi-sink graphs — but these options will have to be studied
more in depth before we can achieve a truly general approach. A more formal analysis
of our algorithm and of its convergence conditions would also be necessary. Still, we
consider that this paper confirms that energy-based approaches are a promising alternative
to the space carving algorithms in volumetric reconstruction.
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