
Automatic Relighting of Overlapping Textures of a 3D Model

Etienne Beauchesne Sébastien Roy
Département d’informatique et recherche opérationnelle (Université de Montréal)

{beauchee, roys}@iro.umontreal.ca

Abstract

This paper presents a new method to correct overlapping
textures of a single 3D model where each texture was ob-
tained under possibly different lighting conditions and color
response of the camera. This situation arises frequently
when a single object is digitized using multiple 3D scan-
ners. Our goal is to remove any visible seam and improve
color consistency between the textures in order to merge
them afterward. To achieve this, we propose an ef£cient
algorithm to compute the “ratio lighting” of two textures,
derive a common lighting from it, and use it to “relight”
each texture. We illustrate our method by correcting tex-
tures of human faces acquired with several structured-light
3D scanners. Experimental results are realistic and demon-
strate how this method can reduce the need to calibrate col-
ors or explicitly solve for the illumination.

1 Introduction

Let us suppose that the object of interest is £xed and im-
ages of it are acquired by one or more cameras. We are
given a geometric model of the object, which may come
from merging of several 3D models. For example, in the
case of faces, we merge three 3D geometries. The view-
points and the illumination may be different for each acqui-
sition. Each image is used to create a texture and we receive
the correspondence between the texture and the 3D model
from a previous step.

The problem we address here is how to correct these tex-
tures so that they can be merged. The elementary operation
in our method is to take two textures and correct them rel-
atively to each other. We consider our technique as a pre-
processing step for texture merging (for example Debevec
[6]). Our main concern is that the result should look as real-
istic as possible. See Figure 1. We will talk later about the
constraints on textures.

A common approach to the problem of texture merging
is to simply remove the seams near texture boundaries, the
constraint being that the textures be modi£ed as little as pos-
sible. Unfortunately, it lacks realism, because the merged
texture may have non-coherent colors, for example if one

Figure 1: A texture correction operation. The histograms
were equalized to increase contrast. Left. Before: Two
juxtaposed models with their textures shown at the same
time, the speckles in the ellipses are due to interlacing of
the meshes. We can see that the speckles are not of the
same color as the surrounding region. Right. After: The
same two juxtaposed models with their textures corrected.
The speckles are much less apparent.

1

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

original texture has a green color bias relatively to the other
one. We will now see several approaches to texture correc-
tion in order to understand their limitations, and the useful-
ness of our method.

In one of the earliest work on the subject, Milgram [13]
has shown how the difference between two textures can be
distributed in the neighborhood of the seam. The input is
two rectangle images that overlap. Let us see how it works.
First, a “zeroth-order” histogram adjustment is done: the
colors of the images are modi£ed by adding a constant value
to each pixel so that overlapping regions have the same in-
tensity averages (R, G and B processed separately). In the
rest of the algorithm, each row will be processed separately,
and only a neighborhood of size 2N of the seam will be
modi£ed. Second, an algorithm determines on each row
where the seam will be. The seam is a point between two
pixels in the overlapping region that speci£es which image
should be used: on the left of it we use the left image and
on the right of it, we use the right image. On each side of
the seam, a linear ramp of length N pixels (starting at 0 and
increasing in absolute value toward the seam) is added to
the intensity values so they meet at the average of the two
pixels nearest to the seam. There are some problems with
this approach. The fact that it depends on the difference
of two pixels makes it vulnerable to the noise they contain,
and it creates horizontal lines of slightly different intensity
which are readily visible [4]. Also it works only for rect-
angular images of ¤at objects where the overlapping region
is rectangular. In Milgram [14], some improvements are
described related to the selection of the seam point and his-
togram equalization.

Rocchini et al. [20] developed an algorithm for partition-
ing the vertices of a triangle mesh depending on which tex-
ture each vertex gets its color from. That partitioning cre-
ates different regions and frontiers between them. The £rst
step is to do an initial partitioning according to a simple cri-
teria. The partitioning is re£ned with a greedy algorithm
to reduce the number of frontier triangles, which are trian-
gles that have vertices assigned to more than one texture. In
other words, they do all reassignments of a node to a texture
that, if considered alone, would reduce the number of fron-
tier triangles in the current assignment. The new assignment
becomes the current one and it continues like this until no
further reduction is possible. To calculate the merged tex-
ture, interpolation is done inside all frontier triangles using
areal coordinates, which are barycentric coordinates nor-
malized so that their sum is 1. Barycentric coordinates of
a point inside a triangle are the weights one must put on
each of the three vertices so that their center of gravity (the
barycenter) is on that point. Consequently, barycentric co-
ordinates are unique up to scale factor.

In contrast, Pulli et al. [17] do not assign a single tex-
ture to each vertex. Instead, they do a weighted averaging

over all the overlapping regions. The weights are calculated
by multiplying several factors: proximity to texture border,
cosine of the angle of the view ray with the normal, three
weights for three views calculated with the direction of the
virtual view. The calculation of these coordinates implies
several steps. First, a Delaunay triangulation on the sphere
of the real view directions is calculated. Then, the spher-
ical triangle in which the virtual view direction lies is de-
termined, and this gives three points, the endpoints of the
directions forming this triangle. These points form a plane
triangle. The weights are the areal coordinates in this trian-
gle of the intersection of the virtual view direction with this
triangle.

Levoy et al. [10] also use a weighted average where the
weights are the con£dence in each pixel value. That con-
£dence takes into account several factors: obliquity of the
surface with respect to the light, projected area of the sur-
face with respect to the camera, proximity to the mirror di-
rection (to reduce highlights), proximity to a silhouette edge
with respect to the camera, proximity to a silhouette edge
with respect to the light, and £nally proximity to the edge
of the color image. Also to prevent rapid changes in con£-
dence from triggering sudden switches from one color im-
age to another, the con£dences are smoothed among neigh-
bors on the mesh. To remain conservative the con£dence is
never increased, only decreased.

For weighted averaging, there are some recurring prob-
lems. If the transition width (of the blending function) is
too large, a slight misalignment may produce a double ex-
posure effect, where some features appear twice, whereas
if it is too small the transition will be made in a few pixels
thereby often creating a seam.

Burt and Adelson [3] successfully address these limita-
tions with multiresolution image splining. They consider
the case where the blending function H(x) has the shape of
a sigmoid, the £rst image has a weight of 1−H(x) and the
second H(x). The transition width is a £xed parameter of
that function specifying how long (in pixels) it takes to go
from 0 to 1. They argue that the ideal transition width will
vary for each spatial frequency in the images. So they use a
pyramid of band-passed images that are blend one level at a
time and then recombined.

But the main problem, from the viewpoint of realism,
with the blending approaches without global adjustment, is
that the blending only affects the overlapping region (how-
ever, in the case of multiresolution image splining [3], this
might not be as severe). The seam is actually made invis-
ible but the regions without overlap may have inconsistent
colors, for instance one texture may be more red or green
than the other. This is because we allow different cameras
and different illuminations. Even for the approaches using
global adjustment, the correction will be the same over all
the texture, although each part of the object (because of the

2

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

varying normal) is not affected by the same illumination.
The naive way to achieve global adjustment would be to

“recover the real color of the object”, that is the re¤ectance
properties. In practice, this is hard to realize. Sato et al.
[21] have developed an approach where they compute re-
¤ectance using color and range images of an object. One
major disadvantage of that technique is that it needs a lot of
images and range images. In the example given in their pa-
per, they use 120 color images from different angles and 12
range images. It is therefore dif£cult to use in certain cases,
especially when scanning humans or animals.

Another way to correct textures is to recover the illumi-
nation and then relight the textures. However this problem
is ill-posed so that more constraints are needed. For exam-
ple, Marshner [12] calculates inverse lighting (a particular
version of inverse rendering), which could also be called
“solving for the illumination”. The inputs are the scene de-
scription (3D model and re¤ectance) and a query image.
First they divide the in£nitely far sphere of light into sev-
eral pieces called basis lights. Then they render the scene
under each basis light. The results are the basis images,
which they combine linearly to get the query image. The
coef£cients of the linear combination (which are also the
intensity of the basis lights) are found using the General-
ized Singular Value Decomposition and some plausibility
constraints. A modi£ed version of that algorithm could be
used to compute the relative illumination, which we will
talk about later.

Ramamoorthi and Hanrahan [19, 18] developped a more
general technique of inverse rendering. They developped
independently and used the same basic ideas as Basri and
Jacobs [1] (subspace of dimension nine in spherical har-
monics space). Their technique allows to recover the illu-
mination and the BRDF for an object, given that the object
has the same isotropic BRDF over all its surface.

The following paragraph is taken from Gumustekin [8]
and explains some approaches to image compositing, which
is related to texture correction and is a step in image mo-
saicking (the steps in order are geometric correction, image
registration, and image compositing):

Finding the best separation border between over-
lapping images [14] has the potential to eliminate
remaining geometric distortions. Such a border
is likely to traverse around moving objects avoid-
ing double exposure [5, 7]. The uneven exposure
problem can be solved by histogram equalization
[7, 11], by iteratively distributing the edge effect
on the border to a large area [16], or by a smooth
blending function [3].

Our approach modi£es not only the overlapping region
but also the rest of the textures in order to get a realistic
texture, that is, as it would appear under a new illumination.

That means consistent colors across textures, so that, for
example, the color of the face seems the same all over. It
is sometimes surprising how different the colors look when
taken with different cameras and illuminations. Yet, in each
image seen separately, the colors seem completely natural.
The kernel of the method consists in the calculation of the
“relative illumination”, which is related to the lightsphere
concept of Blicher and Roy [2].

The major advantages of our method are that it makes
few hypotheses, gives realistic results, and does not involve
any calibration or solving for the illumination. It is much
more realistic than weighted averaging, which is the most
commonly used technique. It is much easier to use than the
re¤ectance estimation techniques. Furthermore, the textures
may have been taken under different illuminations and with
different cameras. The main constraint is that our method
requires similar lighting conditions for points with similar
normals. This implies objects that are convex or close to
convex, such as faces.

2 Hypotheses

Here are some hypotheses we did in order to simplify our
model.
Parallel rays We suppose that all the light sources are punc-
tual and in£nitely far away, thereby making all the rays
coming from a source parallel near the object of interest.
When taken as a whole, these light sources are what we call
the illumination sphere.
Smoothness In this article, we consider only objects with a
relatively smooth surface, or in other words, objects having
no normal discontinuity (except at the edge of the mesh).
Indeed, because we use triangle meshes, the normals do not
vary in a continuous way. Rather, this hypothesis disallows
rapid variations in the normal. Also, it means that most of
the time the normals vary slowly. This implies that, for each
point, one can £nd an in£nitesimal surface patch around it
and a normal at this point, and that the patch and the normal
are perpendicular.
View factor For each point on the surface of the object,
we de£ne the view factor as the fraction of the illumination
sphere that is visible from the in£nitesimal surface patch
around this point. Assuming that a surface patch can only
receive light from the hemisphere centered on its normal,
the view factor should be at most 1

2 .
Convexity Also, we only consider objects which are con-
vex or almost convex (such as faces). In other words, only
objects where most points have a view factor near 1

2 . That is
not true in general for objects, since for some points in con-
cavities, it is signi£cantly lower. Combined with the pre-
vious hypotheses, it implies that all the points with similar
normals have similar illumination.

3

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

BRDF There are two hypotheses concerning the BRDF: it
is isotropic and similar for the points having similar nor-
mals. The isotropy of a BRDF means that if we turn the
object around the normal at a point on the surface, the in-
tensity of that point will not change (if the point is hit by
the same rays of light). We also assume there is no subsur-
face scattering (Jensen [9]), this implies that illumination at
a point does not in¤uence its neighbors. An important point
is that the BRDF doesn’t need to be lambertian. A BRDF
is lambertian when the intensity of a point does not change
with the position of the observer.
Orthographic projection We suppose that each image is
taken from far enough to approximate all the rays as paral-
lel. Therefore, the BRDF for a point depends only on the
surface normal at that point, the incoming light direction,
and linearly on some albedo that varies from point to point
on the surface.
Reliable normals For the tens of faces we scanned, the ge-
ometry seemed very realistic and accurate. So we assume
that we can rely on the geometries to deduce the normals.
Texture overlap We assume that, in each pair of textures we
want to adjust, there is an overlapping region between them.
This region is needed to provide estimates of the “relative
illumination”, which will be explained in the next section.

3 The method

We present a method to adjust the textures two-by-two,
however the method could be modi£ed to adjust n textures
all at the same time, thereby making a global adjustment.
In order to adjust n textures using our method, simply take
two overlapping textures, adjust them, merge them into one,
and continue to do that with other textures until there is only
one left. We do not specify the algorithm used to merge two
textures into one, because any algorithm should do the job,
the textures being almost equal after the correction.

Conceptually, the elementary procedure in our method
re-renders both textures, texture-1 and texture-2, as they
would appear if they had been taken under another illumi-
nation.

3.1 Notation

Some simpli£cations have been done for clarity. Instead of
showing the equations for each channel (R, G and B), we
show them for only one channel, but they are the same for
each.

Also we adjust textures, but we do not mention indices of
pixels in these textures. The reason is that we can associate
each point of the surface to its corresponding pixel in the
texture and vice versa. This implies that each pixel used
in the texture corresponds to a region on the surface of the
object.

Let:

• G be the Gaussian sphere (the set of unit vectors which
we use to represent directions).

• S be the surface of the object.

• A(p) : S → R
+ be the albedo (intrinsic re¤ectance)

function.

• N(p) : S → G be the Gauss map of the surface, i.e.,
the function that maps each point p to its normal.

• Li(g) : G → R
+ be an illumination sphere (it can

represent any number of point light sources). L1(g)
and L2(g) are those present when the corresponding
image was acquired (this is the illumination map of
Miller and Hoffman [15]).

• Ii(p) : S → R
+ be the observed image intensity for

texture-i at a given point p.

• di ∈ G be the orientation of the orthographic projec-
tion of image-i.

• BRDF (v1, v2, n) : G3 → R
+ be the BRDF func-

tion for a certain normal n, where v1 is the viewpoint
direction, v2 is the incident illumination direction.

• V (p, g) : S × G → R
+ be the visibility function of

the illumination sphere from a given point p in a given
direction g (0 = not visible, 1 = visible).

3.2 The model

In this notation, and considering an in£nitesimal solid an-
gle dµ of G with position g, the general model of surface
re¤ectance with attached shadows can be written as (for
i = 1, 2):

Ii(p, di) = A(p)
∫ ∫

G
V (p, g)Li(g)BRDF (di, g,N(p))dµ

By applying the hypothesis that the view factor is near 1
2

everywhere, we can transform it into:

Ii(p, di) = A(p)
∫ ∫

GN (N(p))
Li(g)BRDF (di, g,N(p))dµ

where GN (n) = {g ∈ G|g · n ≥ 0}. Notice that this
equation is of the form:

Ii(p, di) = A(p)Bi(N(p), di)

with Bi : G → R
+. Bi can be thought of as a brightness

function for camera-i that depends on Li and N(p), which
captures the interaction of the lighting distribution with the
normal.

4

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

3.3 Choice of a new lighting

What we want is to re-render both textures as they would
look under a different illumination sphere L′, that gives us:

I ′i(p, di) = A(p)B′(N(p), di)

=
B′(N(p), di)
Bi(N(p), di)

Ii(p, di)

= Ci(N(p), di)Ii(p, di)

where I ′i are the re-rendered texture, Ci is the lightsphere
(relative illumination), and B′ is the brightness function
corresponding to L′. B′ is not an arbitrary function, it must
be the result of a double integral as mentioned in the previ-
ous subsection. Using B1 and B2, a valid value would be an
interpolated value or, more generally, a linear combination
with non-negative coef£cients. In this case, we conclude:

Ci(N(p), di) =
B′(N(p), di)
Bi(N(p), di)

=
k1Bi(N(p), di) + k2B3−i(N(p), d3−i)

Bi(N(p), di)

=
k1Ii(p, di) + k2I3−i(p, d3−i)

Ii(p, di)

We can generate several interesting cases for B′ by vary-
ing k1 and k2 : B′ = Bi, B′ = (Bi + B3−i)/2, and
B′ = B3−i. In the £rst and the last cases, one texture is
modi£ed to use the illumination of the other texture, which
is not modi£ed.

We can verify that B’ is indeed a valid brightness func-
tion:

B′(N(p), di)
= k1

∫ ∫
GN (N(p))

Li(g)BRDF (di, g,N(p))dµ+
k2

∫ ∫
GN (N(p))

L3−i(g)BRDF (d3−i, g,N(p))dµ

=
∫ ∫

GN (N(p))
[k1Li(g) + k2L3−i(g)BRDF (d3−i,g,N(p))

BRDF (di,g,N(p))]×
BRDF (di, g,N(p))dµ

=
∫ ∫

GN (N(p))
L′(g)BRDF (di, g,N(p))dµ

3.4 Relative illumination estimation and ex-
trapolation

We can get one estimate of Ci(N(p), di) for each p in the
overlapping region. We could therefore collect all the avail-
able estimates, however a more robust way is to discretize
the domain of Ci, which is G, and estimate it by voting in
the bins. The result of the vote for a bin is the average of
the votes that fell into it. To have more accurate results,
the points for which either texture had a value too low are
excluded (we chose empirically 5 as a threshold, and the
intensity goes from 0 to 255). Also we did not take into ac-
count bins that have too few votes (in our case: fewer than
about 0.1% of the votes).

In the general case, the discretization for voting could be
done by partitioning G in regions of similar area and shape.
However, for faces, the discretization we used is simpler: it
consists in dividing evenly along the x and y components
of the normal, each in the range [−1, 1] to make a M by M
array of bins. In our case, M = 20 was enough, see later
for a discussion on this parameter. This works for the faces
we scanned, because the face generally do not have normals
with a negative z, and when they do, these normals are ig-
nored. However, the discretization for more complicated
situations would have to be more elaborate.

At this point, the method has some problems associated
with the discretization, the voting, and the extension of the
vote, which will be described later. The processing that is
described below applies to the array representing Ci(n).

First, there is noise in the pixels of the acquired images
and therefore, there will be noise in the estimate of Ci(n).
This should be partially compensated by the averaging of
the votes in each bin.

Second, in order to correct the textures, we need to have
Ci(n) de£ned over the range of the normals of the points
of that texture. However, in general, it will not be the case,
unless the texture to correct is entirely covered by the other,
which would mean there is redundancy in the views taken.

A solution to both problems is to £lter the obtained
Ci(n) by a weighted average of the de£ned values in the
neighborhood. The result of this operation is to smooth
the de£ned values and to extrapolate the unde£ned ones.
The weights are given by a gaussian kernel (2M − 1) by
(2M − 1) bins (with a variance of M

40 bin widths) multi-
plied by the number of votes for a certain bin. For a bin
more than M

10 bins away from any determined one (includ-
ing itself), the effect is comparable to a nearest-neighbor
extrapolation, because of the radial symmetry of the gaus-
sian and because it drops fast.

Third, what sometimes happens is that, because of the
pseudo-nearest neighbor extrapolation, there are rapid ¤uc-
tuations of the values, see for example Figure 2. To counter
that, the values which were initially unde£ned are replaced
by the result smoothed by weighted averaging (with a gaus-
sian kernel (M

2 + 1) by (M
2 + 1) bins with a standard devi-

ation of M
10 bin widths).

Fourth, because of the discretization, we may see discon-
tinuities in the result when the normal changes from one bin
to another. To reduce that, once we have processed Ci(n)
as mentioned, we can calculate I ′i(p) using bilinear interpo-
lation into Ci(N(p), di).

As an example, suppose we have a model of a face from
which three images have been acquired from −45◦ (left), 0◦

(front), and 45◦ (right). We slightly modi£ed the procedure
for n textures here in order to have symmetry between left
and right. Let us assume there is no overlap between the left
and the right textures. We receive the merged geometries

5

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

Figure 2: Intermediate steps in the processing of a light-
sphere. Black represents unde£ned values and other inten-
sities represent ratios (intensity = 100 ∗ ratio). The red
circle contains the valid values of the lightsphere. Left, the
result of the vote. Middle, the lightsphere after weighted
averaging. We notice the discontinuity caused by pseudo
nearest neighbor extrapolation (near the lower right corner).
Right, the values initially unde£ned (the black pixels in the
left image) are smoothed.

from a previous step. Second, we do some texture correc-
tions. We correct the left and the front textures together, to
get a new texture called LF. Then the right and front tex-
tures, to get FR. Finally, the textures LF and FR to get the
£nal result LFR. The coef£cients k i to calculate LF and FR
are 1

3 for the front texture and 2
3 for the other textures. The

coef£cients ki for creating LFR are both 1
2 . Because of the

interpolation, it results in an illumination which is more uni-
form. Because of the coef£cients, the contributions of each
texture in the £nal result is the same.

4 Results and discussion

First, we tried our algorithm on synthetic data, a sphere pic-
tured twice from the same viewpoint, but under two differ-
ent illuminations. The results, which were perfect except
for the rounding errors, can be seen in Figure 3.

We also tried with real data. We used 22 faces to test our
algorithm. They were acquired with three structured-light
3D scanners from InSpeck Inc. To do a multi-scanner acqui-
sition, we £rst do spatial calibration using a dodecahedron.
This allows to £nd the position of each scanner relative to
the others. Second, the scanners acquire data one after the
other. Each acquisition produces one 3D model containing
more than ten thousands points, each precise to 0.5mm and
a 24-bit RGB color texture mapped on the model. Because
of the spatial calibration, the models can be easily aligned
together and each texture can be stitched onto their mesh.

Some results are shown in Figure 1. In Figure 4, we
can see the errors on the corrected texture. Although there
are errors (caused by violations of the hypotheses), the re-
sults still seem very natural. In Figure 5, we can see his-
tograms of the differences of the pixels in the overlapping
region. In Figure 2, we see the result of the processing of

Figure 3: A synthetic test of our algorithm (using three col-
ored lights). The object is a sphere. Image-1 is on the left.
Image-2 in the middle. They overlap completely. Image-2
is re-rendered as if it was under the same illumination as
when image-1 was taken (k1 = 0, k2 = 1). The result is not
shown because it is equal ±1 intensity level to image-1. On
the right, we see the lightsphere (inside the circle) where
each pixel is the ratio of the corresponding bin multiplied
by 100.

the lightsphere (weighted averaging plus smoothing of the
extrapolated unde£ned values). We can see the effect of in-
terpolating between B1 and B2 in Figure 6.

We used a value of M = 20 for the discretization width
in bins and noticed that it gives good results for the faces.
However, our technique could also be used for surfaces with
different BRDF (for example a shiny BRDF). We would
then need to raise M in order to get a good approximation
for Ci.

4.1 Strengths and weeknesses

Let us now examine the strengths and the weaknesses of
our approach. Before deciding to use a correction factor de-
pendent on the normal, we tried several other models. We
tried the additive model (I ′2(p) = I2(p) + k), the multi-
plicative model (I ′2(p) = kI2(p)), the exponential model
(I ′2(p) = I2(p)k). All of them gave bad results, where we
could instantly see the seam. Blending the textures would
not solve our problem even if it could give acceptable re-
sults in the overlapping region: the parts with no overlap
would have different colors. So clearly, this is a strength of
our approach, the seam is almost invisible and the color is
consistent.

We could overcome the convexity limitation by allowing
only certain points to vote: only the points within a certain
range of view factor near 1

2 . We would also have to devise
a way to calculate a modi£ed correction factor for the point
where the view factor is signi£cantly less than 1

2 .
The constraint requiring a common BRDF for all points

with the same normal was a good approximation for all the
faces, and allows good recovery of specular surfaces (as-
suming the BRDF is equal at points with the same normal).

Even if the different images were taken with different
cameras, which each have their own bias, it does not matter

6

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

Figure 4: The absolute difference between the corrected
textures for the red channel (it is similar for the two others
channels). The completely white regions on the left and on
the right are regions where there is only one texture. Black
represents 0 and white, 10 or more.

-40 -20 0 20 40

1000
2000
3000
4000
5000
6000
7000

-40 -20 0 20 40

2000

4000

6000

8000

-40 -20 0 20 40

2000

4000

6000

8000

-40 -20 0 20 40

500
1000
1500
2000
2500
3000

-40 -20 0 20 40

1000

2000

3000

4000

-40 -20 0 20 40

1000

2000

3000

4000

Figure 5: Histograms of the differences between pixels in
the overlapping region for a face. In the top row before
the correction (red, green, and blue), and in the bottom row
after the correction (red, green, and blue). We can see that
the correction centers the error (it is nearer to 0) and reduces
it signi£cantly.

Figure 6: Interpolating the illumination. The textures
shown are texture-1 on the left, and texture-2 on the right. In
the usual order: the original image, the results for B′ = B2,
B′ = (B1 + B2)/2, and B′ = B1. The dark spots on the
right of each face are not errors, simply the third texture (not
modi£ed here).

7

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

because that is taken into account in the “relative illumina-
tion”. If everything seen by one camera is a factor off what
the other one saw, it is already included into Ci(n). This
can remove the effect of Automatic Gain Control.

4.2 Conclusion

There are some questions that we have not considered. We
have not investigated the case where there are one or more
cycles in the graph de£ned by the relation “texture a and
texture b overlap”. For example, it would be the case when
one has acquired images all around an object. A simpler
case: what if the intersection of three textures were not
empty? How would we treat these cases, could we get more
information?

Also we have not taken into account the fact that some
points have a view factor much less than 1

2 . Some possibil-
ities are to reduce their in¤uence during the vote, exclude
them from voting, or compute their correction factor differ-
ently.

References
[1] R. Basri and D. Jacobs. Lambertian re¤ectance and linear subspaces.

Technical report, NEC Research Institute, 2000.

[2] Albert Peter Blicher and Sébastien Roy. Fast lighting/rendering so-
lution for matching a 2d image to a database of 3d models: Light-
sphere. IEICE Transactions on Information and Systems, E84-
D(12):1722–1727, December 2001.

[3] Peter J. Burt and Edward H. Adelson. A multiresolution spline
with application to image mosaics. ACM Transactions on Graphics,
2(4):217–236, November 1983.

[4] Chia-Yen Chen. Image stitching - comparisons and new tech-
niques. Technical Report CITR-TR-30, Tamaki Campus, University
of Auckland, October 1998.

[5] J. Davis. Mosaics of scenes with moving objects. In Proc. of IEEE
Conference on Computer Vision and Pattern Recognition, pages
354–360, 1998.

[6] Paul E. Debevec, George Borshukov, and Yizhou Yu. Ef£cient view-
dependent image-based rendering with projective texture-mapping.
In Automated Texture Registration and Stitching for Real World Mod-
els, pages 105–116, 1998.

[7] S. Gumustekin and R.W. Hall. Mosaic image generation on a ¤at-
tened gaussian sphere. In Proc. of IEEE Workshop on Applications
of Computer Vision, pages 50–55, 1996.

[8] Sevket Gumustekin. An introduction to image mosaicing.
http://likya.iyte.edu.tr/eee/sevgum/research/ mosaicing99/, July
1999.

[9] Henrik Wann Jensen, Steve Marschner, Marc Levoy, and Pat Hanra-
han. A practical model for subsurface light transport. In Proceedings
of SIGGRAPH’2001, pages 511–518, 2001.

[10] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,
and D. Fulk. The digital michelangelo project: 3d scanning of large
statues. In Proc. of SIGGRAPH 2000, July 2000.

[11] J. Lim. Two Dimensional Signal and Image Processing. Prentice
Hall, 1990.

[12] S.R. Marshner. Inverse rendering for computer graphics. PhD thesis,
Cornell Univ., 1998.

[13] D. L. Milgram. Computer methods for creating photomosaics. IEEE
Trans. on Computers, C-24:1113–1119, November 1975.

[14] D. L. Milgram. Adaptive techniques for photomosaicking. IEEE
Trans. on Computers, C-26:1175–1180, November 1977.

[15] Gene S. Miller and C. Robert Hoffman. Illumination and re¤ection
maps: Simulated objects in simulated and real environments. Course
Notes for Advanced Computer Graphics Animation, SIGGRAPH 84.

[16] S. Peleg. Elimination of seams from photomosaics. Computer
Graphics and Image Processing, 16:90–94, May 1981.

[17] K. Pulli, H. Abi-Rached, T. Duchamp, L. Shapiro, and W. Stuetzle.
Acquisition and visualization of colored 3d objects. In Proc. of Int.
Conf. on Pattern Recognition, pages 11–15, 1998.

[18] Ravi Ramamoorthi and Pat Hanrahan. An ef£cient representation for
irradiance environment maps. In SIGGRAPH 2001, 2001.

[19] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing frame-
work for inverse rendering. In SIGGRAPH 2001, 2001.

[20] Claudio Rocchini, Paolo Cignomi, Claudio Montani, and Roberto
Scopigno. Multiple textures stitching and blending on 3d objects. In
Proc. of Eurographics Rendering Workshop 1999, pages 173–180,
June 1999.

[21] Yoichi Sato, M. Wheeler, and Katsushi Ikeuchi. Object shape and
re¤ectance modeling from observation. In Proc. of ACM SIGGRAPH
97, in Computer Graphics Proceedings, Annual Conference Series
1997, ACM SIGGRAPH, pages 379–387, August 1997.

8

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03)
1063-6919/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

