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Abstract

e propose a new rectification method for aligning epipo-
lar lines of a pair of stereo images taken under any camera
geometry. It effectively remaps both images onto the surface
of a cylinder instead of a plane, which is used in common
rectification methods. For a large set of camera motions,
remapping to a plane hasthe drawback of creating rectified
images that are potentially infinitely large and presents a
loss of pixel information along epipolar lines. In contrast,
cylindrical rectification guaranteesthat the rectified images
are bounded for all possible camera motions and minimizes
the loss of pixel information along epipolar line. The pro-
cesses (eg. stereo matching, etc..) subsequently applied
to the rectified images are thus more accurate and general
since they can accommodate any camera geometry.

1 Introduction

Rectification is anecessary step of stereoscopic anaysis.
The process extracts epipolar lines and realigns them hori-
zontally into a new rectified image. This allows subsequent
stereoscopic analysis algorithmsto easily take advantage of
the epipolar constraint and reduce the search space to one
dimension, along the horizontal rows of therectified images.

For different cameramotions, the set of matching epipo-
lar lines varies considerably and extracting those lines for
the purpose of depth estimation can be quite difficult. The
difficulty does not reside in the equations themselves; for a
given point, it is straightforward to locate the epipolar line
containing that point. The problemisto find a set of epipo-
lar lines that will cover the whole image and introduces a
minimum of distortion, for arbitrary cameramotions. Since
subsequent stereo matching occursaong epipolar lines, itis
important that no pixel information islost along these lines
in order to efficiently and accurately recover depth.

Fig. 1 depicts the rectification process. A scene S is
observed by two cameras to create images I; and I,. In
order to align the epipolar lines of this stereo pair, some
imagetransformation must be applied. Themost common of
such transformations, proposed by Ayache [1] and referred
to as planar rectification, is a remapping of the original
images onto asingle planethat is parallel to the line joining
the two cameras optical centers (see Fig. 1, images P, and
P,). Thisis accomplished by using alinear transformation
in projective space applied to each image pixels.

The new rectification method presented in this paper,

Jean Meunier!

Ingemar J. Cox*

Université de Montréalt

Département d’informatique et de recherche opérationnelle
C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7

Figure 1: Rectification. Stereo images ([, l,) of
scene S shown with planar rectification (P, P,)
and cylindrical rectification (Cy,Cy)

referred to as cylindrical rectification, proposes a transfor-
mation that remaps the images onto the surface of a cylin-
der whose principal axis goes through both cameras optical
centers (see Fig. 1, images C; and C»). The actual images
related for Fig. 1 are shownin Fig. 2.

The line joining the optical centers of the cameras (see
Fig. 1) defines the focus of expansion (foe). All epipolar
lines intersect the focus of expansion. The rectification
process applied to an epipolar line aways makes that line
parallel to the foe. This alows the creation of a rectified
image where the epipolar lines do not intersect and can be
placed as separate rows. Obviously, both planeand cylinder
remapping satisfy the alignment requirement with the foe.

Planar rectification, while being simple and efficient, suf-
fersfromamajor drawback: it failsfor somecameramotion,
as demonstrated in Sec. 2. As the forward motion compo-
nent becomes more significant, theimagedistortioninduced
by the transformation becomesprogressively worse until the
image is effectively unbounded. The image distortion in-
duces a loss of pixel information that can only be partly
compensated for by making the rectified image size larger!.
Consequently, this method is useful only for motions with
a small forward component, thus lowering the risk of un-
bounded rectified images. Onebenefit of planar rectification
isthat it preserves straight lines, which is an important con-

ISee Sec. 3.6 for a detailled discussion



sideration if stereo matching isto be performed on edges or
lines.

On the other hand, cylindrical rectification is guaranteed
to provide a bounded rectified image and significantly re-
duce pixel distortion, for all possible cameramations. This
transformation also preserves epipolar line length. For ex-
ample, an epipolar line 100 pixelslong will always be recti-
fiedto aline 100 pixelslong. Thisinsuresaminimal |oss of
pixel information when resampling the epipolar lines from
the original images. However, arbitrary straight lines are
no longer preserved, though this may only be a concern for
edge based stereo.

Planar rectification uses a single linear transformation
matrix applied to theimage, making it quiteefficient. Cylin-
drical rectification uses one such linear transformation ma-
trix for each epipolar line. In many cases, these matrices
can be precomputed so that a similar level of performance
can be achieved.

Although it is assumed throughout this paper that inter-
nal camera parameters are known, cylindrical rectification
works aswell with unknown internal parameters, asit isthe
case when only the Fundamental matrix (described in [2])
isavailable (See Sec. 3.5).

Many variants of the planar rectification scheme have
been proposed [1, 3,4]. A detailed description based on the
essential matrixisgivenin[5]. In[6], ahardwareimplemen-
tation is proposed. In[7], the cameramotion isrestricted to
avergent stereo geometry to simplify computations. It also
presents a faster way to compute the transformation by ap-
proximating it with a non-projective linear transformation.
Thiseliminatestherisk of unboundedimagesat the expense
of potentially severe distortion. In [8], a measure of image
distortion is introduced to evaluate the performance of the
rectification method. Thisstrictly geometric measure, based
on edge orientations, does not address the problem of pixel
information loss induced by interpolation (see Sec. 3.6).

Sec. 2 describes planar rectification in more details. The
cylindrical rectification method is then presented in Sec. 3.
It describes the transformation matrix whose three compo-
nentsare explicitly detailedin Sec. 3.3,3.2and 3.1. Sec. 3.4
discuss the practical aspect of finding the set of correspond-
ing epipolar lines in both images to rectify. It is demon-
dtrated in Sec. 3.5 that it is possible to use uncalibrated as
well as calibrated cameras. A measure of image distortion
is introduced in Sec. 3.6 and used to show how both rec-
tification methods behave for different camera geometries.
Examples of rectification for different camera geometries
are presented in Sec. 4.

2 Linear transformation in projective
space

In this section we show how rectification methods based
on asinglelinear transformation in projective space[1, 3, 4]
fail for some camera geometries.

As stated earlier, the goal of rectification is to apply a
transformation to an image in order to make the epipolar
lines paralel to the focus of expansion. The result is a set
of images where each row represents one epipolar line and
can be used directly for the purpose of stereo matching (see
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Figure 2: Images from Fig. 1. Original images
(I,I,) are shown with cylindrical rectification
(C1,Cy) and planar rectification (P, P,).

Fig. 2).

In projective space, an image point is expressed asp =
(pz, py, )" where h isa scale factor. Thuswe can assume
these points are projected top = (p., p,, 1)".

The linear projective transformation F is used to trans-
form an image point u into a new point v with the relation

F, F, F
v=F -u= F'g F4 Erg
Fs F; Fy

‘u (1)

where

v = (1)x,i)y,1)h)T u=— (umuy,uh)T up #0

Thefact that u;, # 0 simply impliesthat the original image
has afinite size. Enforcing that the reprojected point is not
at infinity impliesthat v, must be non-zero, that is

Up = U Fs + uy Fr +upFs #0 (2)

Since u,, u, are arbitrary, Eq. 2 has only one possible so-
lution (Fg, Fy, Fg) = (0,0, 1) since only u, can guarantee
vy, to benon zero and F to be homogeneous. Therefore, the
transformation F must have the form

F, F F
F=|F, F, F;
0 0 1

which corresponds to a camera displacement with no for-
ward (or backward) component.

In practice, the rectified image is unbounded only when
the foe isinside the image. Therefore, any camera motion
with a large forward component (making the foe visible)
cannot be rectified with this method. Moreover, as soon as
theforward componentislarge enough, theimage pointsare
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Figure 3: The basic steps of the cylindrical recti-
fication method. First (Ry,.), an epipolar line is
rotated in the epipolar plane until it is parallel to
the foe. Second (Ty,..), a change of coordinate
system is applied. Third (Sy,.¢), a projection onto
the surface of the unit cylinder is applied.

mapped so far apart that the rectification becomes unusable
due to severe distortion.

In the next section, we described how cylindrical recti-
fication can alleviate these problems by making a different
use of linear transformationsin projective space.

3 Cylindrical rectification

The goa of cylindrical rectification is to apply a trans-
formation of an original image to remap on the surface of a
carefully selected cylinder instead of a plane. By using the
line joining the cameras optical centers as the cylinder axis
(Fig. 1), al straight lines on the cylinder surface are neces-
sarily parallel to the cylinder axis and focus of expansion,
making them suitable to be used as epipolar lines.

The transformation from image to cylinder, illustrated
in Fig. 3, is performed in three stages. First, arotation is
applied to aselected epipolar line (step R ,.). Thisrotation
isinthe epipolar planeand makestheepipolar lineparallel to
thefoe. Then, achangeof coordinatesystemisapplied (step
T ¢,.) to the rotated epipolar line from the image system to
the cylinder system (with foe as principal axis). Finally,
(step Sy,e), thisline is normalized or reprojected onto the
surface of a cylinder of unit diameter. Since the line is
already parallel to the cylinder, it is simply scaled along the
direction perpendiculartotheaxisuntil it liesat unit distance
fromtheaxis. A particular epipolar lineis referenced by its
angle # around the cylinder axis, while a particular pixel
on the epipolar line is referenced by its angle and position
along the cylinder axis (see Fig. 3).

Even if the surface of the cylinder is infinite, it can be
shown that the image on that surface is always bounded.
Sincethetransformationalignsan epipolar linewith theaxis
of thecylinder, it is possibleto remap apixel to infinity only
if its epipolar line is originaly infinite. Since the original
image s finite, all the visible parts of the epipolar lines are

also of finite length and therefore the rectified image cannot
extend to infinity.

Therectification process transforms an image point p, .
into anew point q¢,. Which is expressed in the coordinate
system foe of the cylinder. The transformation matrix L,
is defined so that the epipolar line containing py,. will
become parallel to the cylinder axis, the foe. Since al
possible epipolar lines will be parallel to the foe, they will
also be paralel to one another and thus form the desired
parallel aligned epipolar geometry.

We have the linear rectification relations between q ..
and p,, . Stated as

Qfoe = Lfoep:cyz
= (SfoeTfoeRfoe)pxyz (3)
and inversely
Pzy: = L;;eqfoe
= (R?oeT?oe S;o]e)qfoe (4)
where
1 0 0 foe
Stee= 10 % 0 and Tfoe—[ u ]
00 7 v

These relations are completely invertible (except for the
special case p,,. = foe, which is quite easily handled).
The matrix R,. represents the rotation of the image point
in projective space. The matrix T #,, represents the change
from the camera coordinate system to the cylinder system.
The matrix Sy,. represents the projective scaling used to
project rectified point onto the surface of the unit cylinder.

The next three subsections will describe how to compute
the coordinate transformation T ¢,., the rotation R ¢, and
the scaling S 7.

3.1 Determining transformation T

The matrix T, isthe coordinate transformation matrix
from system (x; y; z) to system (foe; u; v) such that

Qfoe = Tfoequz
quyZ = TC)Z;oe Qfoe (5)

and is uniquely determined by the position and motion of
the cameras (see Fig. 3).

Any camerahasaposition pos and arotation of ¢ degrees
aroundthe axisaxis relativeto theworld coordinate system.
A homogeneousworld point p,, is expressed in the system
of cameraa (with pos,, axis,, and ¢,,) as

Pa = Rawpw

where R, isthe 4 x 4 homogeneous coordinate transfor-
mation matrix obtained as

R _ rot(axis,, —¢,) 0 I —pos,
aw 0 1 0 1

_ Tow —Taqw - POS,
B 0 1



where
Tow = rot(axis,, —¢q)

and rot(A,6) isa3 x 3 rotation matrix of angle 6 around
axis A. The corresponding matrix Ry, for camera b with
pos,, axis, and ¢, isdefined in asimilar way.

Thedirect coordinatetransformation matricesfor camera
a and b such that

Pa = Rabpb
Py = Rbapa
are defined as
1 ro, foe,
R = Raw- wa = 0 1
1 ry, foey
Rba = wa ' Raw = 0 1
where
Tab = TawTlyhy
Tpe = rbwr?;w
foe, = ru, - (pos, — pos,)
foe, = 1y, - (Pos, — posy)

from which we can derive the matrix T,.,, for rectifying
the image of cameraa as

n(foe,)
n(z x foe,) (6)
n(foe, x (z x foe,))

Tfoe;a =

wheren(v) = v/||v|| isanormalizing function. The corre-
sponding matrix T,.., for rectifying the image of camera
b can be derived similarly or more simply by the relation

*Tfoe;a *Tap (7)

For the case where foe, = z, the last two rows of T,
can be any two orthonormal vectors perpendicular to z.

3.2 Determining rotation R

The epipolar line containing a point p,,. will be rotated
around the origin (the camera's optical center) and along
the epipolar plane until it becomes parallel to the foe. The
epipolar plane containing p,,. aso contain the foe (by
definition) and the origin. The normal to that planeis

Tfoe;b =

axis = foe X pgy. (8)

andwill betheaxisof rotation (seeFig. 3), thusensuring that
Pzy- remainsin the epipolar plane. Inthecase p,,,. = foe,
the axis can be any vector normal to the foe vector.

The angle of rotation needed can be computed by using
the fact that the normal z = (0,0, 1)7 to the image plane
hasto be rotated until it is perpendicular to the foe. Thisis
because the new epipolar line has to be parallel to the foe.
The rotation angle is the angle between the normal z =
(0,0,1)" projected on the epipolar plane (perpendicular

to the rotation axis) and the plane normal to the foe aso
containing the origin. By projecting the point p;,. onto
that plane, we can directly compute the angle. We have z’,
the normal z projected on the epipolar plane defined as

[ —axiswaxis~ -|
z' = axis X (z x axis) = aXlSanIS,
2

[ ax1s -|-ax1sy J

and p', the projected p,,,. on the plane norma to the foe,
defined as

p’ = T?oeBTfoepxyz (9)
where T ;. was previoudy definedin Eq. 6.

The rotation matrix R, rotates the vector z’ onto the
vector p’ around the axis of Eq. 8 and is defined as
Rfoe = I‘Otplﬁzr (10)
whererot,, 1, rotates vector b onto vector a such that
n(a) . n(b)
n(a x b) n(a x b)
) b)

rot, p = [
n((axb) xa n((a x b) x

If the point qy,. is available instead of point p,,., (as
would bethe casefor theinversetransformation of Eq. 4) we
can still compute R ¢, from Eqg. 10 by substituting g, for
Pzy- iN EQ. 8 and 9 where q,,. is derived from q,. using
Eq. 5. Notice that because p,,. and q,,. arein the same
epipolar plane, the rotation axis will be the same. Also, the
angle of rotation will also be the same since their projection
onto the plane normal to the foe isthe same (modulo ascale
factor).

3.3 Determining the scaling S

Thematrix S 4, isused to project the epipolar line from
the unit image plane (i.e. located at z = 1) onto the cylin-
der of unit radius. To simplify notation in the following

equation, we define
0 0 0
0 1 0
0 01

Asshownin Eqg. 3and 4, S¢,. has one scalar parameter k.
This parameter can be computed for a known point p,, .
(Eq. 3) by enforcing unit radius and solving the resulting
equation

1 00
A=[0 0 0 B =
0 0O

Bage| = 1 (11)
1 0 0
B 0 % 0 TfoeRfoepxyzH =1
00 1

which yields the solution

k = ||B TfoeRfoepzyz”



For the case of a known point q¢,. (EQ. 4), enforcing
that the epipolar linesall havetheir z coordinatesequal to 1
givesthe equation

0
[ 0 ] ! (R?oeT?oe
1

which can be simplified to
(TfoeCS) . (A qfoe) + k;(TfoeCS) . (B qfoe) =1

where c; is the third column of rotation matrix R ... The
solution isthen

po 1l (Troecs) - (A dyoe)
(TfoeCB) (B qfoe)
It should be noted that the denominator can never be zero

because of Eq. 11 and thefact that T s, c3 can never be zero
or orthogonal t0 B q ¢,

3.4 Common angle interval

In general, a rectified image does not span the whole
cylinder. The common angle interval is the interval that
yields all common epipolar lines between two views. In
order to control the number of epipolar lines extracted, it is
important to determinethisinterval for each image.

Noticethat the rectification processimplicitly guarantees
that a pair of corresponding epipolar lines have the same
angle on their respective cylinder, and therefore the same
row intherectifiedimages. The concernhereisto determine
theangleinterval of epipolar lineseffectively presentin both
images.

It can be shown that if arectified image doesnot span the
whole cylinder, then the extremum angles are given by two
corners of the image. Based on this fact, it is sufficient to
computethe angle of the four cornersand one point between
each pair of adjacent corners. By observing the ordering of
these angles and taking into account the periodicity of angle
measurements, it is possible to determine the angle interval
for oneimage.

Given the angleintervals computed for each image sepa-
rately, their intersection isthe common angleinterval sought.
The subseguent stereo matching processhasonly to consider
epipolar linesin that interval.

3.5 The case of uncalibrated cameras

Until now, it was always assumed that the cameraswhere
calibrated, i.e. their internal parametersare known. The pa-
rameters are the principal point (optical axis), focal lengths
and aspect ratio. More generally, we can represent all these
parametersby a3 x 3 upper triangular matrix. Inthissection,
we assume that only the fundamental matrix is available.
This matrix effectively hides the internal parameters with
the camera motion (external parameters) in asingle matrix.

The fundamental matrix F defines the epipolar relation
between points p, and p, of theimages as

p, F-p.=0 (12)

It is straightforward to extract the focus of expansion for
each image by noticing that all points of one image must
satisfy Eq. 12 when the point selected in the other imageis
itsfoe. More precisely, therelationsfor foe, and foe;, are

0 Vpb
0 Vp,

pr-F-foea =
foebT-F-pa =

which yield the homogeneouslinear equation systems

F .-foe, = 0 (13)
F' .foe, = 0 (14)

which are easily solved.

At this point, it remains to show how to derive the con-
stituent of matrix L ¢, of Eq. 3 fromthefundamental matrix
F. Thesearethe matrices S¢,c, Ryoe, and T,

Thetransformation T ¢,.., can be directly obtained from
Eq. 6, using foe, obtainedin Eq. 13. Symmetrically (using
Eq. 14) we obtain

n(foey)
n(z x foey)
n(foe, x (z x foey))

Tfoe;b =

The rotation matrix Ry¢,. is computed from the foe
(which is readily available from the fundamental matrix
F) and the transform matrix T'z,., exactly as described in
Sec. 3.2.

Since the scaling matrix S, is directly computed from
the value of rotation matrix R,. and transform Ty,., itis
computed exactly as described in Sec. 3.3.

The rectification method is applicable regardless of the
availability of the internal camera parameters. However,
without these parameters, it is impossible to determine the
minimum and maximum disparity interval which isof great
utility in an subsequent stereo matching. Inthispaper, al the
results obtained performed with known internal parameters.

3.6 Epipolar distortion and image size

Thedistortioninduced by the rectification processin con-
junctionwith the resampling of the original image can create
aloss of pixel information, i.e. pixelsin the origina im-
age are not accounted for and the information they carry
is smply discarded during resampling. We measure this
loss along epipolar lines, since it is along these lines that a
subsequent stereo process will be carried out. To establish
ameasure of pixel information loss, we consider a rectified
epipolar line segments of alength of one pixel and compute
the lenght L of the original line segment that is remapped to
it. For agiven length L, we definetheloss as

loss(L) = { 1-1/L
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Figure 4: Pixel loss as afunction of cameratransla-
tion T = (1,0, z). Rectified image width is 365, 730
and 1095 pixels for an original width of 256 pixels.

A shrinking of original pixels (i.e. L > 1) creates pixel
information loss while a stretching (i.e. L < 1) simply
reducethedensity of therectifiedimage. For awholeimage,
the measure is the expected loss over al rectified epipolar
lines, broken down into individual one pixel segments.

The fundamental property of cylindrical rectification is
the conservation of the length of epipolar lines. Since pixels
do not stretch or shrink on these lines, no pixel information
islost during resampling, except for the unavoidablelossin-
troduced by the interpolation processitself. For planar rec-
tification, the length of epipolar linesis not preserved. This
impliesthat some pixel losswill occur if the rectified image
sizeis not large enough. In Fig. 4, three different rectified
image width (365, 730, 1095 pixels) were used with both
methods, for a range of camera trandations 7' = (1,0, z)
with a z component in the range z € [0,1]. Cylindrica
rectification shows no loss for any camera motion and any
rectified image width?. However, planar rectification in-
duces apixel lossthat depends on the camera geometry. To
compensate for such aloss, the rectified images have to be
enlarged, sometimesto the point where they become useless
for subsequent stereo processing. For a z component equal
tol(i.e. T = (1,0,1)), dl pixels are lost, regardless of
image size.

4 Experiments and results

Some exampl es of rectification applied to different cam-
erageometriesareillustrated in this section. Fig. 5 presents
an image plane and the rectification cylinder with the repro-
jected image, for an horizontal cameramotion. In this case,
the epipolar lines are aready aligned. The rows represent
different angles around the cylinder, from 0° to 360°. The
image aways appears twice since every cylinder point is
projective across the cylinder axis. The number of rows de-
termine the number of epipolar linesthat are extracted from
the image.

Fig. 6 depicts a camera geometry with forward motion.
The original and rectified images are shown in Fig. 7 (pla-
nar rectification can not be used in this case). Notice how

2The minimum image width that guarantees no pixel loss is
equal to vw? + h? for an original image of size (w, h)

Figure 5: Image "cube” rectified. Horizontal cam-
era motion (foe = (1,0,0)). A row represent an
individual epipolar line.

the rectified displacement of the sphere and cone is purely
horizontal, as expected.

Fig. 8 depicts a typical camera geometry, suitable for
planar rectification, with rectified images shown in Fig. 9.
While the cylindrical rectification (images C1, Cs inFig. 9)
introduces little distortion, planar rectification (images
Py, P,) dignificantly distorts the images, which are also
larger to compensate for pixel information |oss.

Exampleswherethe foe isinside theimage are obtained
when the forward component of the motion is large enough
with respect to thefocal length (asin Fig. 7). Itisimportant
to note that planar rectification always yields an unbounded
image (i.e. infinite size) for these cases and thus can not be
applied.

The execution time for both methodsis very similar. For
many camera geometries, the dight advantage of planar
rectification relating to the number of matrix computationis
overcome by the extra burden of resampling larger rectified
images to reduce pixel loss.

5 Conclusion

We presented a new method, called cylindrical rectifi-
cation, for rectifying stereoscopic images under arbitrary
camera geometry. It effectively remaps the images onto the
surfaceof aunit cylinder whose axis goesthrough both cam-
erasoptical centers. It appliesatransformationin projective
space to each image point. A single linear transformation
is required per epipolar line to rectify. While it does not
preserves arbitrary straight lines, it preserves epipolar line
lengths, thusinsuring minimal loss of pixel information. As
a consequence of allowing arbitrary camera motions, the
rectified images are always bounded, with a size indepen-
dent of camera motion.

The approach has been implemented and used success-
fully in the context of stereo matching [9], ego-motion
estimation [10] and tridimensional reconstruction and has
proved to provide added flexibility and accuracy at no sig-
nificant cost in performance.
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Figure 7: Rectification of forward camera motion.
The images I, I, are shown with their cylindrical
rectification Cy,C,. The rectified image displace-
ments are all horizontal.

Figure 8: Camera geometry suitable for planar rec-
tification. I, I, are the original images.

Figure 9: Rectified images. Cylindrical rectification
(C1,Cy) and planar rectification (P, Py)



