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Sunita L. HingoraniAT&T Bell Laboratories184 Liberty Corner RoadWarren, NJ 07059sunita@cartoon.lc.att.comABSTRACTThe constant image brightness (CIB) assumption assumesthat the intensities of corresponding points in two imagesare equal. This assumption is central to much of com-puter vision. However, surprisingly little work has beenperformed to support this assumption, despite the fact themany of algorithms are very sensitive to deviations fromCIB.An examination of the images contained in the SRIJISCT stereo database revealed that the constant imagebrightness assumption is indeed often false. Moreover, thesimple additive/multiplicative models of the form IL =�IR + � do not adequately represent the observed devi-ations. A comprehensive physical model of the observeddeviations is di�cult to develop. However, many poten-tial sources of deviations can be represented by a non-linear monotonically increasing relationship between inten-sities. Under these conditions, we believe that an expan-sion/contraction matching of the intensity histograms rep-resents the best method to both measure the degree of va-lidity of the CIB assumption and correct for it. Dynamichistogram warping (DHW) is closely related to histogramspeci�cation. However, it is shown that histogram speci�-cation introduces artifacts that do not occur with dynamichistogram warping.Experimental results show that image histograms areclosely matched after DHW, especially when both histogramsare modi�ed simultaneously. DHW is also capable of re-moving simple constant additive and multiplicative biaseswithout derivative operations, thereby avoiding ampli�ca-tion of high frequency noise. It is demonstrated that DHWcan improve the estimates from stereo and optical 
ow es-timators. 1. INTRODUCTIONThe constant image brightness (CIB) assumption as-sumes that the intensities of corresponding points (orplanar patches) in two (or more) images are equal. Thisassumption is central to bodies of work in optical 
owestimation, motion and structure, stereo and recogni-tion based on color histograms. However, surprisingly

little work has been performed to support this assump-tion, despite the fact that many of these algorithmsare very sensitive to deviations from CIB. We exam-ined 49 image pairs contained in the SRI JISCT stereodatabase by comparing their intensity histograms. Wefound that corresponding pairs of histograms could varysigni�cantly, i.e. the constant image brightness as-sumption is often false. In practice, it is common tobelieve that any deviation from the constant imagebrightness assumption can be modelled by a simpleglobal spatially-invariant additive constant and/or aglobal spatially-invariant scaling of the image intensi-ties (contrast), i.e. IA = �IB+�. However, our experi-ments show that this linear model does not adequatelyrepresent the observed deviations. Experiments sug-gest that the form of the relationship between the twosets of intensities might be a non-linear model of theform IA = �I
B + �.There are a number of possible reasons why a pair ofimages might deviate from the CIB assumption, assum-ing that the image content remains the same. Theseinclude (1) variations in illumination, (2) variations incamera signal response and (3) the time-varying non-linear automatic gain control of the cameras. If it is as-sumed that these factors can be lumped together andrepresented as an arbitrary non-linear monotonicallyincreasing function that uniquely maps intensity valuesin imageA to intensity values in imageB, then errors inthe constant image brightness assumption can be cor-rected, or at least reduced, by matching the intensityhistograms of the two images.Image histogram matching is typically performedby the process of histogram speci�cation [3]. However,while histogram speci�cation produces good matches,the local comparison of histograms introduces artifacts(spikes in the matched histograms) because matchingerrors propagate and accumulate and must periodicallybe corrected. The simple example of Figure (1) illus-
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Figure 1: Incorrect histogram speci�cation. A) Origi-nal histogram. B) Speci�ed histogram. A0) Resultinghistogram using SML histogram speci�cation as in [8].Using GML also gives erroneous results for this case.trates the e�ect. Here, intensity values 1 through 4occur more frequently in image A while intensity val-ues 7 through 10 occur more frequently in image B.Clearly though, the mapping should be one to one,i.e. IAi = IBi . However, the matching of IA1;2 withIB1;2 results in a cumulative error of 0:02, which is sub-sequently reduced by matching IA3;4 to IB4 , as shownin histograms A0,B of Figure (1). By matching his-togram values directly and performing a global opti-mization via dynamic programming, this problem isavoided and better matching is thereby achieved asshown in Figure (1d). To avoid this problem and oth-ers reported in [7, 8] we have developed a new ap-proach called dynamic histogram warping (DHW) thatuses dynamic programming on the histograms valuesdirectly. Histogram speci�cation typically maps an im-age histogram to a (�xed) reference histogram. Theprecision of this mapping is limited since while com-pression (i.e. a many to one mapping) is straightfor-ward, expansion (i.e. mapping a single intensity tomany) is not possible.1. However, an expansion ofone histogram is equivalent to a corresponding com-pression of the other histogram. Thus, if the referencehistogram is also modi�ed by corresponding compres-sions, a new pair of histograms can be generated thatare more closely matched than original histogram spec-i�cation can achieve. This is important for purposes ofconstant image brightness correction.1Note that expansion is di�erent from stretching which isa one-to-one mapping in which only the range of intensities isaltered.

A B
intensity

fr
eq

ue
nc

y

intensity

fr
eq

ue
nc

y

intensity

fr
eq

ue
nc

y

intensity

fr
eq

ue
nc

y

Figure 2: Histogram matching. Legal matches (A) al-ways join one intensity to one or more others. Illegalmatches (B) join many intensities to many others.2. DYNAMIC HISTOGRAM WARPINGDynamic histogram warping is strongly related to workin sequence comparison and especially to dynamic timewarping [5]. For dynamic histogram warping, two in-tensity histograms are compressed and/or expanded tobest match one another. Histogram samples can bematched one-to-one, one-to-many (expansion) or many-to-one (contraction), as illustrated in Figure (2a). How-ever, the many-to-many mappings of Figure (2b) areconsidered illegal. Because of quantization error, weinitially considered allowing many-to-many mappings.However, while the di�erences in the resulting histogramswere reduced with such mappings, the original shapeof the histograms was often lost. We felt that it wasdesirable to retain the original shape as much as pos-sible and therefore did not allow many-to-many map-pings, though to do so is straightforward within ourframework.2To specify the cost of a matching, let hAm and hBnrepresent the frequency of occurrence of the mth andnth intensity values in images A and B respectively.Let HAm and HBn represent the cumulative frequencyof occurence such that HAm = Pmi=1 hAi and HBn =Pni=1 hBi . Then the usual cost of matching intensityIAm of image A with intensity IBn in image B is sim-ply ��hAm � hBn ��. This is appropriate for a one-to-onemapping. However, for histograms the quantities be-ing compared are the number of occurrences of intensityvalues. Thus, for a one-to-two mapping, for example,the cost should be ��hAm � (hBn + hBn�1)�� and for a one-to-k mapping ���hAm �Pk�1i=0 hBn�i���. The fact that thecost of matching hAm+1 to hBn depends on whether ornot hAm was matched to hBn , complicates the dynamic2Of course, an additional cost must be associated with many-to-many mappings otherwise the degenerative mapping of all-to-all is always the optimum solution.



programming. However, since the maximum size of acompression or expansion is always �nite3, then such acost function can be accomodated [2]. In general, thecost of a k-to-l mapping isdk;l(m;n) = ������k�1Xi=0 hAm�i � l�1Xj=0 hBn�j������= ��(HAm �HAm�k)� (HBn �HBn�l)��Finally then, it is necessary to de�ne the total cost ofa matching. This cost is de�ned recursively asD(0; 0) = 0D(i; j) =1 (i � 0; j � 0; (i; j) 6= (0; 0))D(m;n) = min(D(m� 1; n� 1) + d1;1(m;n)D(m� k; n� 1) + dk;1(m;n); (2 � k �M)D(m� 1; n� l) + d1;l(m;n); (2 � l � N)whereM andN represent the maximum allowable com-pression of the respective histograms. The cost func-tion can be e�ciently minimized via dynamic program-ming. 3. EXPERIMENTAL RESULTSWe applied dynamic histogram warping to all of theSRI JISCT database and compared it with histogramspeci�cation. To illustrate its e�ectiveness, the intensi-ties of the left image of the synthetic stereo pair of Fig-ure (3) were non-linearly mapped using b128 sin( Ii255��
Figure 3: A synthetic stereo pair.�2 ) + 128c as the transform. The intensity histogramsof the two images are shown in Figure (4). Histogramspeci�cation and dynamic histogramwarping were thenapplied, using the second histogram as a reference, toproduce the corrected histograms of Figure (5). Supe-rior matching is achieved using DHW (sum of absolutedi�erences of 214) while the GML histogram speci�-cation yields an error of 222. Notice the large spikesaround intensity 100 in Figure (5a), which are arti-facts due to the local optimization of the cumulativehistograms. Finally, in order to correct for CIB, bothhistograms were simultaneously corrected using DHW.3In the limit one-to-N , where N is the range of intensityvalues.
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Figure 4: Intensity histograms for the stereo pair. Theleft and right histograms are respectively in gray andblack.
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Figure 5: Corrected histograms: (A) histogram speci-�cation (GML), (B) DHW with right histogram �xed.The left and right histograms are respectively grey andblack.The corrected histograms are almost identical (error of24). The utility of this is clearly demonstrated by ap-plying a stereo algorithm [1] that assumes CIB to theimage pair (1) with no correction, (2) with correctionby histogram speci�cation and (3) correction by DHW.The corresponding disparity maps are shown in Fig-ures (6). Very poor disparity estimates are obtainedwith no correction. Histogram speci�cation providessubstantial improvement but signi�cant errors remain.In contrast, with DHW, the disparity map is almost asgood as the algorithm can perform on perfect data.

Figure 6: Disparity maps: (Top) with no correction,(Left) with a linear correction model and (Right) withDHWOptical 
ow estimation can also bene�t from dy-
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Figure 7: Optical 
ow for \ceiling" images (top). Flowobtained for original image pair (left). Flow obtainedafter using DHW (right).namic histogram warping. Figure (7) shows the imageof an o�ce ceiling, courtesy of S. Negahdaripour. \Af-ter the �rst image was taken, the camera aperture wasincreased before taking the second image" [6].Figure (7) shows that the optical 
ow obtained us-ing the method of Horn and Schunk [4] is heavily cor-rupted because the constant brightness assumption isnot satis�ed. After correcting the images with DHW,the resulting 
ow (Figure 7, bottom right) is very closeto the real 
ow, which should be zero everywhere.44. CONCLUSIONDespite the fact that the constant image brightness(CIB) assumption is common to many branches of com-puter vision, very little work has been directed to test-ing this hypothesis. Examination of the SRI JISCTstereo database revealed that the common constant im-age brightness assumption is often erroneous. This de-viation is probably due to several factors which, whenlumped together, can be represented as an arbitrarynon-linear monotonically increasing function. In thiscase, errors in the constant image brightness assump-4It should be noted that for some stereo and optical 
ow pairslittle of no improvement was obtained. Of course, violations ofthe constant image brightness assumption represent only one ofmany sources of possible errors in stereo and optical 
ow algo-rithms and it is therefore unreasonable to hope that DHW alonewould resolve all such problems.

tion can be corrected, or at least reduced, by matchingthe intensity histograms of the two images.Conventional histogram speci�cation based on lo-cal matching cumulative histograms was shown to beproblematic since errors propogate and accumulate andmust then be anulled by spurious intensity matches. In-stead, a dynamic histogram warping is proposed, anal-ogous to dynamic time warping, that works directly onthe intensity histograms by expanding or compressingintensity bins. One-to-one and one-to-many mappingsare allowed.DHW is superior to histogram speci�cation and canbe used to correct for constant image brightness with-out requiring intensity derivatives. We demonstratedthis by applying a maximum likelihood stereo algo-rithm to an image pair that originally deviated sig-ni�cantly from the CIB assumption. The experimen-tal results showed that the while the original disparitymap contained many errors, a reduction in errors wasachieved by �rst normalizing the images using DHW.A similar experiment was performed for optical 
owestimation. The results clearly show that the accuracyof the resulting 
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