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Abstract. Recently many graph theoretic formulations where proposed
for solving specific energy functions minimization problems. The spe-
cific case where a linear penalty term is used to enforce smoothness is
of particular interest since it makes it possible to find the global solu-
tion using an efficient flow algorithm in a graph. However, a proof was
needed to establish equivalence between a minimum s-t cut of a sim-
ple undirected graph and the original minimization problem. This paper
presents such a proof for very general graphs, thereby making unneces-
sary the workarounds used until now, while providing some performance
enhancement. Extending on previous one-dimensional proof, it is general
enough to allow arbitrary graphs of any dimension as well as arbitrary
neighborhood structure.

1 Introduction

One of the fundamental problem of computer vision is the labeling problem,
where one must assign a label to each pixel in an image. This problem can take
many forms, such as disparity estimation in stereo, gray level intensity in image
restoration, or pixel displacement in optical flow estimation.

The contribution of this paper concerns the case where the problem is cast as
a minimization of an energy function E over the space of all possible labelings of
the image pixels. The function is designed so that its global minimum represent
the best labeling for the particular problem to solve.

One kind of energy function is of particular interest.

E(f)=Ep+Es

It separates the energy into two terms: a label term Ep and a smoothness term
Eg. The label term expresses the cost of assigning a specific label to a particular



pixel. The smoothness term enforces smoothness between neighboring pixels over
the image.

The key property of this formulation is that if the smoothness term is linear,
then it is possible to find efficiently the global minimum of the function. This is
accomplished by transforming the problem of minimizing into one of finding the
minimum cost cut of a carefully designed flow graph.

The space of all possible cuts of the flow graph is clearly larger than the space
of solutions of the original problem. Indeed, some cuts correspond to associating
more than one label to a single pixel, which is not allowed. It was conjectured
that these illegal cuts can never be minimum [1] so the space of all minimum cuts
essentially corresponds to the space of optimal labelings in the original problem.

While a partial proof was provided [2], the full proof turned out to be elusive
and some workarounds were proposed where the graph is modified to explicitly
remove undesired solutions [1, 3-6]. These modifications result in a more complex
graph, for instance with infinite edge capacities.

This paper provides a proof that no illegal cut can ever be minimum, for
graph topologies general enough to include the very common 2D grid topology
and much more, and some variation of the linear smoothness penalty term.
Modifications of the original graph formulation is thus unnecessary.

The following sections summarize the transformation from a pixel labeling
problem with a linear smoothness term into finding the minimum cut in a flow

graph.

1.1 Pixel labeling as an energy minimization problem

Suppose you want to find a mapping f : x — § from the set x of all pixels in
an image to a label 6 € {1,...,n} such that it minimizes the following energy
function

E(f)=Ep + Es (1)

where Ep is an energy term containing the matching costs of assigning a label
to a pixel, and where Eg is a smoothness term penalizing the change of labels
between two neighboring pixels.

The matching cost term Ep has the form

Ep = Zg(xaf)

where g(z, f) is the cost of attributing the label f(z) to the pixel . Typically,
the labels represent disparities in a stereo correspondence problem but could
represent another parameter that must be assigned to each pixels in an image.



The smoothness term Es has the form

Eg = Z U(mayaf)

zeX,yeEN ()

where N (z) is the set of neighbor pixels of z, and v(-) is the penalty cost of
assigning labels f(x) and f(y) to pixels z and y.
When v(z,y, f) is of the form

v(z,y, f) = k(z,9)|f(x) = F ()] (2)

then there is a polynomial time algorithm for finding the global solution of the
minimization [1] through the reformulation of the problem as a minimum cost
cut in a flow graph. For most other forms of v(-), such as the Potts model or any
other robust penalty function, there is no polynomial algorithm and one must
resort to approximations [2,4].

For the linear penalty functions, the ordering of the labels is constrained to
be one-dimensional, such as disparities in stereo or gray level intensity in image
restoration. For two-dimensional labels, such as optical flow displacements, a
linear penalty is not directly usable [7].

1.2 The flow graph formulation

From the energy minimization with linear penalty function (Eq. 2), we can con-
struct a flow graph such that the minimum cut through the graph will represent
the assignment of labels to the pixels minimizing the original energy function of
Eq. 1 [references].

Let G = (V, E, k) be a finite capacitated undirected graph with vertex set V,
edge set E and non-negative edge capacities k : E — ZZ2° ; we will denote an
undirected edge between vertices = and y by {z,y}, so its capacity is k({z,y}),
or k(x,y) for short. In fact, it corresponds to the term k(z,y) of Eq. 2. The nodes
of G represent the pixels to label (typically a 2D grid) and the edges represent
the neighborhood structure (4-connected is typical). The topology of G can be
arbitrary, thus allowing different dimensionality of pixels (3D voxels for example,
or temporal sequence), and different neighborhood relationships.

Suppose H = (Vg, Eg,¢) is a graph whose vertex set Vg is

{s,t} UV x {1,...,n},
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Fig. 1. Typical graph topology. G is depicts pixels and their neighborhood structure.
H is the complete graph after product with label nodes {1,2,3,4}. The source s and
sink ¢ in H are not illustrated.

n being an integer greater than 1 representing n — 1 possible labels to assign, as
depicted in Fig. 1, whose edge set Ep is

{{s,(z, 1)} |z €V}
U{{(z,n),t} |z €V}
O {{(,0), i)} | {0} € B 1 < <)
U {{(z,i),(z,i+ 1)} |z€V,1<i<n}

and with capacities such that

C[Sa (IL‘, 1)] = 00, rzeV
c[(m,n),t] = 00, zeV (3)

cl(z,), (y,9)] = Xi k(z,9), \i>0,{z,y} € E,1<i<n

cl(z,1), (z,i+1)] = g(z,1), g(z,i) >0,z € V,1<i<n

where g(z,4) is the cost of assigning label i to pixel z. The infinite capacities
represent the source s and sink ¢ connected respectively to the front (z,1) and
back (z,n) of the graph. We refer to edges of the form (z,i), (z,i + 1) as label
edges, and edges of the form (z,14), (y,1) as penalty edges. Since H is an undirected
graph, the reverse capacities c[(y, ), (z,4)] and ¢[(z,i4+1), (z, )] are not explicitly
defined.

The minimum s-t cut (minimum cost cut separating the source s and sink %)
of graph H yields the labeling of minimum cost according to Eq. 1.



1.3 Other graph capacities

In order to remove the possibility of having a minimum cut that would fold on
itself, yielding multiple solutions for a pixel, several modifications of the original
undirected graph where proposed.

In [6], the following change of the cost structure of Eq. 3 was proposed

c(z,4), (y,9)] = k(z,y,9), {z,y} e E,1<i<n
d(z,), (z,i+1)] = g(z,i), g(z,i) >0, z€V,1<i<n 4)
c[(z,i+1),(,i)] = 0 zeV,1<i<n

making H a directed graph by making the reverse capacity of the label edges
infinite. Since it is easy to show that a fold in a cut always include a reverse
label edge with infinite capacity, it follows directly that no such cut can be
minimum. Also, this change has the advantage of allowing more freedom in
assigning capacities to the penalty term, since k(x,y, ) is more general than the
original A\;k(x,y) formulation. This potentially allows a wider range of convex
functions to be used as a smoothness term.
Another formulation [4] suggests the following change from Eq. 3

c[(z, ), (y,1)] = k(z,y), {z,y} € E,1<i<n
c[(z,i),(z,i+1)] = g(z,i) + K(x), 9(z,i) >0,z € V,1<i<n

where K (x) is large enough. This undirected graph is in fact equivalent to the
directed graph

c[(z,1), (y,1)] = k(z,y), {r,y} € E,1<i<n
(@), (z,i +1)] = g(=,1), g(z,i) >0,z €V,1<i<n
c(z,i+ 1), (z,9)] = g(z,i) + 2K (x), zeV,1<i<n

which corresponds to lowering the infinite capacity of Eq. 4 to the large finite
value g(z,4) + 2K (z).

As a consequence of the following proof, these modifications are not needed
anymore to guarantee a valid labeling.

In practice, a performance degradation of 10% was observed when the ad-
ditional flow capacity introduced by these modifications of Eq. 3 is added to
the graph [2]. Our own preliminary experiments did not produce any conclusive
evidence of a significant change in performance. A degradation of performance
would be consistent with recent results showing that worst case running time
for flow algorithms such as preflow-push depends on maximum flow capacity as
well as the number of vertices and edges [8,9].



1.4 Brief description of the proof

The proof proceeds by reducing an arbitrary cut through a sequence of cuts, the
last one of which features only single solutions and is guaranteed to cost less
than all the preceding ones. This sequence is finite since it relies on a height
function that takes positive integral values and decreases from one step to the
next.

Consider the graph depicted in Figure 2. A cut with single solutions has only
white nodes on top of black nodes. Each step of the proof consists of selecting
two consecutive rows (indicated by two arrows) where the node order is reversed
(black on top of white) somewhere inside them; one then flips black nodes to
white or white to black to restore the order everywhere it is required in those

two rows.

Label edge

o
—— Penalty edge

Fig. 2. Typical graph with acut A (o € A,e & A).

The following section contains the complete proof.

2 Proof

Let G = (V,E,k) and H = (Vy, En,c) be the graphs defined in Sec. 1.2.
We now consider subsets of Vg containing s but not ¢, i.e. s-t cuts; we want to
show that in a minimal s-t cut A of H, i.e. one that minimizes the cost function

> c(a,b),

a€AbgA,{a,b}cEn



there are no two cut edges with non-zero capacities in the same column, that
is, for all z € V there is an 1 < 4 < n — 1 such that (z,1),...,(z,7) € A and
(z,i+1),...,(z,n) ¢ A (from this point on, the term ’s-t cut’ will imply finite
cost, which amounts to saying for a cut A that (z,1) € A and (z,n) ¢ A for all
zeV).

To do this, we first define the height h of an s-t cut A: let

P(A) = {{(z,1), (z,i + 1)} | (z,0) € A, (z,i+1) ¢ A}
U {{(@,1), (@i + 1)} | (2,0) ¢ A, (z,i+1) € A}

= the set of cut label edges

Py(A) = {{(,4), (z,i+ 1)} € P(A) such that
{{(z,), (z,j +1)} € P(A)|j < i} is even}

= the set of cut edges in an odd-numbered position in a given column
Q(A) = {{(z,1), (,0)} | {z,y} € B, (w,i) € A, (y,4) ¢ A}

= the set of cut penalty edges

QA = > k(z,y)
{(z,9),(y,9)}€Q(A),z,yeV,1<i<n
h(A) = |P(A)|M? + [|Q(A)IM + |4], ()

where M is an integer strictly greater than |Vg| and the largest value of ||Q(A)]|.
If A; and A, are s-t cuts such that |P(A;)| > |P(Az)|, then

Do
JEINSSS
| |
|
T
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Fig. 3. Illustration of Py. The elements of Py(A) are the thick label edges.



(IP(AN| = [P(42))M? + (IQ(AD] = [|Q(A2) )M + [A:1] — |42
> M2 + (|| QA = IQ(A2)|)M + |A1] - |A2| > M? — [|Q(A2)||M — |4z
>M*—-(M-1)M - (M—-1)=1

so h(A1) > h(Ay); if instead |P(A;)| = |P(A2)| but ||Q(A1)]| > [|Q(As)|| then

(IP(A1)| = |P(A2) ) M? + (|Q(AD = |Q(A2)[) M + [Ar] — | Az
A > M- (M-1)=1

so again h(A;) > h(As2). To sum up,

( |P(A1)| > [P(A2)]
or
h(A1) > h(Az) iff § |P(A1)| = [P(A2)] and ||Q(A1)]| > [|Q(A2)]|
or
L [P(A1)|=]P(A2)] , [|Q(A1)]|=][Q(A2)|| and |A1]|>]As].

To obtain the result, we will show by induction that for all s-¢ cut A, there
is another (call it Ag) such that |P(Ap)| = |V| (Ao has only one cut edge per
column), P(Ao) C Py(A) and }- a0 €(a) < X 4cqa) c(a):

for A with h(A) < (|[V| +1)M?, this is obviously true, as then |P(A4)| = |V|;

suppose now that this is true for all s-¢ cuts with height < N and that
h(A) = N (N some integer > (|V| 4+ 1)M?); since |P(A)| > |V, we can find an
1 <ip < n such that there is an = € V with (z,i0) ¢ A and (z,i9 + 1) € 4; let

Wi ={z eV | (i) ¢ A, (z,io + 1) € A}
Wa = {z € V| (z,i0), (z,i0 + 1) € A}
Wi ={z €V | (z,40), (z,io + 1) ¢ A}
Wy={z eV | (zi0) € A, (z,i0 +1) ¢ A}

o] = Z k(way)a Qg = Z k(.’IJ,y), a3z = Z k(:c,y),

zeEW1,yeWs zeW1,yeWs zeW1,yeWa
{z,y}eE {w,y}EE {$,y}€E

(i)if a1 < a2 +ag: the cut Ay = A\ {(z,io+1) | = € W1} satisfies |P(A;)| <
|P(A)|, as for & € W1 the cut at {(z, o), (z,i0+1)} moves to {(z,i0+1), (z,i0+
2)}if (z,40 +2) € A, or disappears along with the one at {(z,io + 1), (z,i0+2)}



if (z,i0 +2) ¢ A; it also satisfies ||Q(A41)|] < [|Q(A)]], as

Z k(':C:y) - Z k("E:y)

{(2,),(y,8)}€Q(4) {(2,1),(y,9) }€Q(A1)

z,yeV,1<i< z,yeV,1<i<n
= Z k(z,y) — Z k(z,y) = a2 + az — au;

{(z,i0+1),(y,0+1)}€Q(A) {(z,i0+1),(y,30+1)}€Q(A1)
z,yeVv z,ye

clearly |A;| < | 4|, therefore h(A;) < h(A), so there is an Ay with |P(4o)| = |V,
P(Ag) C Py(Ar) and 3- e o(a,) (@) < 3 ,cqqay) ¢(a); in a column, the cuts that
move always are in an even-numbered position and the removed cuts come in
pairs, leaving the parity of the other cuts unchanged, therefore Py(A;) C Py(A);
2ac(a) €(@) = Xie(ay) €(@) = kig41(a2 + asz — a1), hence Ag does the trick
for A , which thus satisfies the induction hypothesis.

(il)if a1 > a2 + as: in that case, as < a; — az < a; + ag; the cut 4; =
A U {(z,i0) | = € W1} satisfies |[P(A;)| < [P(A)|, as for z € Wy the cut at
{(z,10), (z,i0 + 1)} moves to {(z,ig — 1), (z,i0)} if (z,ig — 1) ¢ A, or disappears
along with the one at {(z,i9—1), (z,40)} if (2,90 —1) € A; it satisfies ||Q(A41)]| <
lQ(A)]], as

Z k(z,y) — Z k(z,y)

{(2.1),(y,9)}€Q(A) {(2.,9),(y,9) }€Q(A1)
z,y€V,1<i<n z,y€V,1<i<n
= Z k(z,y) — Z k(z,y) = a1 + az — a,
{(@0),(v,i0) }€Q(A) {(@i0),(y,70) }€Q(A1)
z,yeVv z,yE

therefore h(A4;) < h(A), so there is an Ag with |P(4o)| = |V, P(Ao) C Fo(A1)
and -, coia,) €(@) < Xoeq(ay) €la); as in (i), Ao does the trick for A, which
again satisfies the induction hypothesis.

We conclude that the hypothesis is true for all s-t cuts, thus completing the
proof.

Note: We used 3¢, i) (4.1 €Q(A),z,yeV,1<i<n K(Z,Y) instead of the more nat-
ural 37, o4 c(v) in the definition of [|Q(A)|| simply because of the possibility
that some of the A;’s might be zero.

3 Example

Two sample reduction sequences are illustrated in Fig. 4 and 5. Notice that the
height function h(A) always decreases from one step to the next, given the choice
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21 M2 + 15 M + 27 11 M2 +15 M + 22
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11M2+13M+21 11 M2+ 11 M+ 20
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ot
9MZ2+9M+19

Fig. 4. Sample reduction sequence. Penalty edges have capacity k(z,y) = 1; label edges
have arbitrary capacity. The height function h(A) from Eq. 5 is provided for each step.
The two rows selected for the next reduction are also marked.
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9M2+7M+50

Fig. 5. Sample reduction sequence with alternate row selection. Penalty edges have
capacity k(z,y) = 1; label edges have arbitrary capacity. The height function h(A)
from Eq. 5 is provided for each step. The two rows selected for the next reduction are
also marked.



of M. However, the cost of successive cuts does not necessarily decrease but still
the final cut has a lower cost than all previous ones. Indeed, all the cut label edges
in the final cut were already cut throughout the reduction sequence; moreover,
the cost of cut penalty edges is guaranteed never to increase throughout the
reduction sequence.

4 Conclusion

This paper presented a proof that the minimum cut of an undirected graph for-
mulation of an energy minimization with linear smoothness term always yields
a single solution for each pixel to label. This result extends a previous one-
dimensional proof [2] to images of arbitrary dimension and neighborhood struc-
ture and thus makes proposed workarounds [1,3-6] unnecessary.
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