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Overview

• Introduction.

• Previous Works.

• Observation.

• Our Algorithm.

• Experimental Results.

• Conclusion.
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Dense Stereo
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Y

Left Right Depth map

Near Far

2 cameras

• For each pixel in the left image we try to find the

corresponding pixel in the right image.

• The resulting displacement for that pixel (disparity) re-

lates to the distance between the object and the reference

camera.

2



Dense Stereo

E(f) =
∑

p∈P

e(p, f(p))

︸ ︷︷ ︸
likelihood

+smoothing.

2 cameras

• P : set of reference pixels.

• f : disparity map.

• Hypothesis : for each reference pixel corresponds a sup-

porting pixel.
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Camera Configuration
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• 5 cameras in cross configuration.

• Disparity map is computed for the central camera.

• In red, examples of occlusion.
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Disparity and Visibility Maps
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Reference camera

• One disparity for each pixel.

• One visibility mask for each pixel.

• i.e. mask (0, 0, 0, 1).
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Multi-camera and Occlusion

E(f, g) =
∑

p∈P

e(p, f(p), g(p)) + smoothing.

with

g(p) = V (p|f(p), f) ∀p ∈ P

• f disparity map.

• g visibility mask map.
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Nakamura96
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plausible

Occlusion

• Some masks are very probable.

• Some masks are improbable.

• We can pre-compute a sub-set Mh of plausible masks.
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Nakamura96, Park97, Kang01 and Besnerais04

g∗f(p) = arg min
m∈Mh

e(p, f(p),m) w(m)

then,

E(f, g∗f) =
∑

p∈P

e(p, f(p), g∗f(p)) + smoothing

Occlusion

• Hypothesis : photo-consistency ⇒ correct visibility.

• Visibility is heuristic.
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Occlusion Zones in Stereo

Cumulative histogram of likelihood term

• Black : non-occluded pixels.

• Red :occluded pixels.

10 20 30 40 50 60 70 80
Tsukuba Direct search

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Venus Direct search

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Sawtooth Direct search

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Map Direct search

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Tsukuba Ground truth

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Venus Ground truth

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Sawtooth Ground truth

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80
Map Ground truth

0.2

0.4

0.6

0.8

1

• Photo-consistency 6⇒ geo-consistency.

• Show the limitation of heuristic approaches.
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Geo-consistency

All masks are consistent with the scene geometry.

g(p) ≤ V (p|f(p), f) ∀p ∈ P

Nakamura96

• Using an occluded camera ⇒ important artifact.

• Not using a visible camera ⇒ no impact.
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Kolmogorov02, Faugeras98 and Drouin05

E(f, g) =
∑

p∈P

e(p, f(p), g(p)) + smoothing

with

g(p) ≤ V (p|f(p), f) ∀p ∈ P

Occlusion

• Kolmogorov : jumps from one geo-consistent configura-

tion to another.

• Faugeras : level set (continuous framework).

• Drouin : starts from a non geo-consistent solution and

converges to one which is.

• One common feature : hard to solve.
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Disparities and Occlusions

camera

xi xj

di

dj
xjxi

dj

di

continuous not continuous

camera

Continuous representation

• Occlusion : xi + di ≥ xj + dj

Discontinuous representation

• Occlusion : xi + di = xj + dj
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Disparities and Occlusions

camera

xi xj

di

dj
xjxi

dj

di

continuous not continuous

camera

Continuous representation

• Occlusion occurs when

max
0≤k<j

(k + dk) ≥ j + dj

• Occlusion at j depends on visibility at < j.

• Efficiently computed.
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Dynamic Programming
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Visibility Masks

unknown visibility
Left

unknown visibility

to be minimized

already minimized
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known visibility

Occlusion

• Cameras can be split in 2 sets CG and CH.

• 2 sets of masks are build MG and MH.

• Sets depend on the order in which lines are processed.
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Visibility Masks

unknown visibility
Left

unknown visibility

to be minimized

already minimized

Top

Right

Bottom

known visibility

known visibility
Masks

Mg = { (0,1,0,0),(0,0,0,1),(0,1,0,1) }
Mh = { (1,0,0,0),(0,0,1,0) }

Occlusion

• Camera order (left, right, top, bottom).

• In bold : cameras belonging to Cg.
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Energy Function

E(f, g) =
∑

p∈P

e(p, f(p), g(p)) + smoothing

with

g(p) =







a mask in Mg

arg min
m∈Mh

e(p, f(p), m)

if a camera in Cg is visible

otherwise

Configuration of low energy.
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Disparity and Visibility smoothing

Visibility map

Disparity map

• Difference of depth between two neighbor pixels.

• Change in the set of masks (Mh and Mg).

• Smoothing function may have any shape.
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2 Steps Smoothing

Passive Smoothing
Active Smoothing

Iterative Dynamic Programming (Leung04)
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Experimental Results

Tsukuba Head and Lamp

• 384 × 288 with 16 disparity steps.

• 5 images in cross shape configuration were used.
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Experimental Results

|f(p) − fT (p)| > 1

• An error of 1 could be the result of discretization.

• Standard metric.
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Experimental Results

Algorithms Error

Ours + IDP (16 iterations) 1.57%

Ours + IDP (4 iterations) 1.67%

Nakamura96+ Graph Cut 1.77%

Ours + IDP (1 iteration) 1.82%

Kolmogorov02 2.30%

Nakamura96 + IDP (12 iterations) 2.35%

Drouin05 +BNV 2.46%
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Experimental Results

Middlebury sequence

• 334 × 383 with 20 disparity steps.

• 6 scenes with 7 images each in single baseline configura-

tion were used.
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Experimental Results

Middlebury sequence
algorithms barn1 barn2 bull poster venus sawtooth average

Graph Cut (no occlusion) 3.5 % 3.1 % 0.7 % 3.7 % 3.4 % 3.3% 3.0%

IDP (no occlusion) 3.0 % 4.9% 1.2% 6.0 % 5.8% 3.7% 4.1%

Drouin05 +Graph Cut 0.8 % 0.6 % 0.4 % 1.1 % 2.4 % 1.1 % 1.3%

Nakamura96 + Graph Cut 1.4 % 1.5 % 0.9 % 1.1 % 4.0 % 1.5% 1.7%

Ours +IDP 0.7 % 3.9 % 0.8 % 4.0 % 5.3% 1.0 % 2.6%

Nakamura96 + IDP 1.6 % 6.0 % 1.9 % 4.5 % 7.4% 2.2 % 3.9%

• The camera configuration is not favorable to our ap-

proach.
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Experimental Results

Tsukuba sequence

• 320 × 240 with about 24 disparity steps.

• 5 images in cross shape configuration were used.
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Conclusion

Summary

• Hybrid between geo-consistent and heuristic approaches.

• Fast and can easily be parallelized.

• Code can be download from :

www.iro.umontreal.ca/~drouim/

Future work

• Generalizing to arbitrary camera configurations.

Wish list

• Designing an hardware implementation in FPGA.
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Ordering Constraint
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• The order in which two objects are encounter along an

epipolar line does not change.

• Not always true.
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Ordering Constraint

2

1

2 1 2 1

2

1

12 21

• Continuous mesh ⇒ ordering constraint.

• On the masks but not on the geometry.
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Experimental Results
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Resistance to change of the smoothing parameter.
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