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Abstract

This paper presents a new and fast algorithm for multi-
baseline stereo designed to handle the occlusion problem.
The algorithm is a hybrid between fast heuristic occlu-
sion overcoming algorithms that precompute an approxi-
mate visibility and slower methods that use correct visibility
handling. Our approach is based on iterative dynamic pro-
gramming and computes simultaneously disparity and cam-
era visibility. Interestingly, dynamic programming makes it
possible to compute exactly part of the visibility informa-
tion. The remainder is obtained through heuristics. The va-
lidity of our scheme is established using real imagery with
ground truth and compares favorably with other state-of-
the-art multi-baseline stereo algorithms.

1. Introduction

The goal of multi-baseline stereo is to reconstruct the
3D structure of a scene from multiple views with optical
centers located in a two-dimensional grid configuration. In
this paper, we used a configuration of five rectified images,
equally spaced and arranged in a cross (Fig. 1). The dis-
parity map is reconstructed from the point of view of the
center camera which we call the reference. Occlusion oc-
curs when part of a scene is visible in the reference but not
in some supporting camera (Fig. 1). The difficulty of de-
tecting occlusion comes from the fact that it is induced by
the 3D structure of the scene, which is unknown until the
correspondence is established. This paper proposes a novel
multiple-baseline stereo algorithm that computes simulta-
neously the disparity and part of the visibility information.
The remaining visibility information cannot be computed
and is found using heuristics. The proposed approach uses
iterative dynamic programming (IDP) [4], a fast method for
computing disparity maps. When applied to ordinary stereo,
it minimizes the same energy function as Graph Cut [3] but
obtains slightly higher error rates.

We use a unique property of dynamic programming that
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Figure 1. A cross-shaped camera configuration. The
reference and the supporting cameras are labeled ref, left,
right, top and bottom respectively. An example of occluder
and occluded pixels are shown in black and white respec-
tively.

allows the application of IDP to mutiple-baseline stereo in a
way that is impossible to do with Graph Cut. In this paper,
we assume that the images are already rectified. For more
details about image rectification, see [25].

To compute a disparity map for a reference image, we
use a set of reference pixels P and a set of disparity labels
D. A D-configuration f : P �→ D associates a disparity
label to every pixel. When occlusion is not modeled, the
energy function to minimize typically is

E(f) =
∑
p∈P

e(p, f(p))

︸ ︷︷ ︸
pointwise

likelihood

+
∑
p∈P

∑
r∈Np

s(p, r, f(p), f(r))

︸ ︷︷ ︸
smoothing

(1)
where e uses all the cameras for each pixel and Np is a
neighborhood of pixel p. This can be solved because the
likelihood term e(p, f(p)) is pointwise independent and the



smoothing uses a 2-site clique form.
To model occlusion, we must compute the volumetric

visibility Vi(q, d, f) of a reference pixel q located at dis-
parity d from the point of view of a camera i, given a dis-
parity configuration f defined for all other pixels. It is set
to 1 if the point is visible, and 0 otherwise. The visibility
information is collected into a vector as a visibility mask

V (q, d, f) = (V1(q, d, f), . . . , VN (q, d, f))

where N is the number of cameras outside the reference;
a vector (1, . . . , 1) means that the 3D point is visible in all
supporting cameras and (0, . . . , 0) means that it is invisible.
We call M the set of all possible visibility masks; an M-
configuration g : P �→ M associates a mask to every pixel
of the reference image. Using this, we transform Eq. 1 into
an occlusion-aware energy function

E(f, g) =
∑
p∈P

e(p, f(p), g(p)) + smoothing. (2)

Ideally, we would like to use g(p) = V (p, f(p), f) every-
where. Since this introduces a dependency between f and
g, thus making the problem too hard, we will use instead for
some cases a correct visibility, i.e. a g satisfying

g(p) ≤ V (p, f(p), f) (3)

for each component of these vectors and all p ∈ P . For the
others, we will say that the handling of visibility is heuristic.
Typically, we define the pointwise likelihood

e(p, d,m) =
m · C(p, d)

|m| for p ∈ P , d ∈ D, m ∈ M
(4)

where C(q, d) = (c1(q, d), . . . , cN (q, d)) is the vector of
matching costs of the pixel q at disparity d for each cam-
era. We use |m| to represent the l1-norm which is just
the number of cameras visible from q at d. In a multi-
baseline configuration, we can make the hypothesis that ev-
ery point of the reference is seen by at least one support-
ing camera. So the case where |m| = 0 cannot occur.
For example, a simple cost function would be ci(q, d) =
(Iref (q) − Ii(Ti(q, d)))2 where Iref and Ii are respectively
the reference and the supporting image i. Ti transforms
pixel q at disparity d into the corresponding pixel of image
i. In order to simplify the discussion, we will always con-
sider the disparity as a positive value independently of the
supporting camera used, and the Ti’s take this into account.

The rest of this paper is divided as follows: in Section 2,
previous work is presented. Section 3 describes our algo-
rithm. Experimental results are presented in Section 4.

2. Previous work

In a recent empirical comparison of strategies to over-
come occlusion for 2 cameras, Egnal [6] enumerates 5 basic

ones: left-right checking, bimodality test, goodness Jumps
constraint, duality of depth discontinuity and occlusion, and
uniqueness constraint. Some algorithms that have been pro-
posed rely on one or more of the these strategies, and are
often based on varying a correlation window position or
size [11, 8, 26, 12]. Other algorithms use dynamic pro-
gramming [18, 9, 1, 5] because of its ability to efficiently
solve more complex matching costs and smoothing terms.
Two methods using graph theoretical approaches [10, 13]
have been proposed, but again they do not generalize well to
multiple-camera configurations. Okutomi and Kanade have
proposed a matching cost function designed to reduce am-
biguity in stereo with multiple cameras having collinear op-
tical centers[19]. However, their approach does not model
occlusion.

When extending binocular stereo to multiple baselines,
the amount of occlusion increases since each pixel of the
reference camera can be hidden in more than one support-
ing camera. Some researchers have proposed specially de-
signed algorithms based on pre-computed visibility masks
to cope with this. A subset Mh of the most likely visibility
masks of M is selected based on knowledge of the camera
configuration. In order to determine the mask for a pixel
p at disparity f(p), the most photo-consistent one g∗f (p) is
selected, that is

g∗f(p) = arg min
m∈Mh

e(p, f(p), m) w(m)

where w(m) is a weight function favoring certain masks
over others [17]. The problem thus becomes the minimiza-
tion of E(f, g∗f ) in f . Since e is pointwise independent, the
new problem is reduced to the original formulation of Eq. 1
and is easily solved using standard algorithms. This tech-
nique is used in [17, 16, 20, 12]. Since the selected masks
and the disparity map do not always respect Eq. 3, these
methods are heuristic. A survey paper by Scharstein and
Szeliski compares various binocular standard algorithms
[22].

Other approaches try to minimize directly Eq. 2 in f and
g, subject to the constraint of Eq. 3. Such correct meth-
ods have to solve a substantially more difficult problem than
heuristic ones. In [15, 23], visibility-based methods are in-
troduced. The matching cost incorporates the visibility in-
formation as a photo-consistency matching criteria, thereby
implicitly modeling occlusion in the reconstruction pro-
cess. Space carving can be seen as a greedy algorithm that
minimizes Eq. 2 without smoothing. Similarly, a level-set
method [7] uses the visibility information from the evolving
reconstructed surface to explicitly model occlusion. In this
case, depths are continuous and the problem is difficult to
cast in the discrete setting of Eq. 2. Nevertheless, the idea
is similar. In [14], a stereo algorithm based on graph cuts is
presented. It strictly enforces visibility constraints to guide
the matching process and ensures that all visibility masks
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Figure 2. Cumulative histograms of matching cost values
of occluded (thin line) and non occluded (thick line) pixels
for 3 of the 4 test sequences of the Middlebury compara-
tive study [22], for the top) depths from ground truth bot-
tom) most likely depths (direct search). The x-axis’ range
is [0, 80] and the y-axis’ is [0, 1].

are consistent with the recovered surface. This algorithm
jumps from one configuration respecting Eq. 3 to another.
The formulation imposes strict constraints on the form of
the smoothing term, constraints that will not apply to our
method.

3. A hybrid algorithm

Heuristic approaches rely on the hypothesis that photo-
consistency implies visibility. The figure 2 suggests that this
is not always true. Using the matching cost function and im-
ages from the Middlebury comparative study [22], we com-
puted the cumulative histograms of cost values for pixels
classified as occluded and non occluded, based first on the
ground truth and then on the computed disparity maps us-
ing direct search. The histograms are very different when
the ground truth is used, but not when a direct search is.
This indicates that many occluded pixels have a low cost
and illustrates the fact that photo-consistency does not im-
ply visibility. Ideally, we would like to benefit from the
speed and simplicity of heuristics without being affected by
the similarity between the matching cost distribution of oc-
cluded and non occluded pixels.

The algorithm we propose goes through the reference
image pixel by pixel, building potential disparity maps for
all the pixels up to the current one. At all time, the algo-
rithm has access to the correct visibility information for a
subset Cc of the set C of all supporting cameras. This visi-
bility information comes from the partial knowledge of the
disparity map (Fig. 3).

We can build a set Mc of masks using only cameras in
Cc. Given that each camera can be used or not, and dis-
carding the empty mask, we are left with 2#Cc − 1 masks
(# denotes the cardinality as usual). A mask from Mc is
correct, independently of the visibility status of the cameras

known surface

p
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camera 3

camera 2

camera 1

unknown surface

unknown visibility

Figure 3. Example of the use of partial disparity map in-
formation. It is known that the point p is not visible from
camera 1 but it is visible from camera 2. For camera 3, the
partial disparity map does not allow us to know the visibil-
ity.

not in Cc (it has been noticed that removing a camera that is
visible is far less damaging than keeping a camera that is not
visible [17]). For the cases where no camera in Cc is visi-
ble, we must select a mask in another set Mh that only uses
cameras in the subset Ch = C − Cc. We contruct Mh so it
only contains masks with one supporting camera. We thus
have #Mh = #Ch. Since the set Mh can contain more
than one mask, we use the heuristic that photo-consistency
implies visibility to select the visibility mask. When a mask
in Mh is selected, it is known that all cameras in the sub-
set Cc are not visible. Since they are not used in Mh, the
heuristic mask is likely to be in fact correct. We expect the
choice between Mc and Mh to be spacially coherent, we
can thus add a visibility smoothing term that penalizes the
use of masks belonging to differents sets for adjacent pixels.

Explicitly, for a pixel p and a certain disparity map f
constructed up to the previous pixel, if p is visible by at
least one camera in Cc, the mask of p at d is set to a partial
visibility V ′(p, d, f) with each component defined as

V ′
i (p, d, f) =

{
Vi(p, d, f) if i ∈ Cc

0 otherwise.

If p is not visible by any camera in Cc, its mask is defined as
argminm∈Mh

e(p, d, m). Note that the mask which mini-
mizes the previous energy function would also minimize it
if other masks containing more than one camera were added
to the set Mh. This comes from the matching cost function
of Eq. 4 and the fact that the mean of multiple values is
always greater than the smallest of these values.

Our algorithm finds an f and a g having a low energy
according to Eq. 2 (not necessarily a global minimum ), re-
specting the constraint

g(p) =

{
V ′(p, f(p), f)
arg min

m∈Mh

e(p, f(p), m)
if ∃i ∈ Cc : Vi(p, f(p), f) = 1

otherwise.
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Figure 4. DP matching process. To determine the best
disparity map up to pixel i with disparity d, for the different
disparity values of i − 1, we look at the best solution up to
i − 1, available by construction.

Disparity and visibility will be solved simultaneously us-
ing dynamic programming, taking into account long range
visibility interactions.

3.1. Optimizing disparity and visibility

The stereo matching proceeds using Dynamic Program-
ming (DP) applied along epipolar lines, which can be hori-
zontal or vertical for our camera configuration. We illustrate
the process for a left-right epipolar line, with a center ref-
erence image and left and right supporting images. When
dynamic programming proceeds along, the computation of
the disparity at pixel i can rely on knowledge of the dispari-
ties of all preceding pixels (Fig. 4). In the following discus-
sion, a left to right order is assumed, but a right to left one is
possible as well. Because of this, the visibility between any
camera to the left of the reference and the 3D point formed
by pixel i at disparity d is also known (Fig. 3). A simi-
lar strategy for binocular stereo was presented in [1]. When
going from left to right, Cc consists of the left camera and Ch

of the right one. Consequently, Mc contains only the mask
consisting of the left camera, namely (1, 0). Similarly, Mh

is simply {(0, 1)}. When solving the correspondence prob-
lem along an epipolar line, two 2-dimensional tables t and
t′ are filled out; t(i, d) is the lowest energy of all disparity
maps of pixels 0 to i with pixel i at disparity d; t′(i, d) is
the disparity of pixel i − 1 given by this map of lowest en-
ergy, denoted fi,d(i′). Two sample disparity maps, fi−1,d

and fi−1,d−2, are highlighted in Fig. 4. The table t′ is used
to compute the different fi,d’s.

Explicitly, the tables t and t′ are defined inductively as

t(0, d) = e(0, d, (1, 0))
t′(0, d) = d

t(i, d) = min
d′∈D


 ev(i, d, d′)

+ s(i − 1, i, d′, d)
+ t(i − 1, d′)




t′(i, d) is the index of the minimum
in the above formula

where

ev(i, d, d′) =
{

e(i, d, (1, 0)) if O(i, d, d′) < 0
e(i, d, (0, 1)) otherwise

and O(i, d, d′) is a visibility function that is smaller than 0
iff the left camera is visible. It only requires the knowledge
of fi−1,d′(j) for j < i. The fi,d’s can be computed with the
relations

fi,d(i) = d

fi,d(j) = t′(j + 1, fi,d(j + 1)) for 0 ≤ j < i.

It is thus possible to compute fi−1,d′(j) for all j < i and
d′ ∈ D. This allows us to compute visibility O(i, d, d′) for
all d′ and finally t(i, d). Note that if for some j ≤ i′ ≤ i
and d, d′ ∈ D we have fi,d(j) = fi′,d′(j) then fi,d(k) =
fi′,d′(k) for all k ≤ j. Moreover, the likelihood term e of
a pixel i is not pointwise independent but depends on every
pixel located to its left. As mentioned before, s may include
visibility as well as disparity smoothing.

3.2. Computing visibility

When computing the left visibility function, the dispar-
ity map representation has an impact. We can consider a
disparity map as a series of disconnected 3D points or as a
continuous mesh. We define O(i, d, d′) as the visibility of
pixel i at disparity d for the best solution with pixel i− 1 at
disparity d′. In the discontinuous case, O is defined as

O(i, d, d′) =




0 if i + d = j + fi−1,d′(j)
for some j < i

−1 otherwise.

(5)

It takes the value 0 when occlusion occurs and -1 when the
left camera is visible. In the continuous case, we can lower
the complexity by introducing the function O′ defined as

O′(j, d′) = max
0≤k≤j

(k + fj,d′(k)).

This function can be computed inductively using the rela-
tions

O′(0, d′) = d′

O′(j, d′) = max{O′(j − 1, fj,d′(j − 1)), j + d′}
for j > 0.
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Figure 5. Optimization of a line: the visibility informa-
tion is available for the right and the bottom cameras. For
the current line, the right camera visibility is computed si-
multaneously with the disparity. The bottom camera visi-
bility depends on the disparity of the previous lines which
is fixed.

Now O can be simply defined as

O(i, d, d′) = O′(i − 1, d′) − (i + d) (6)

which is negative when the left camera is visible. Using
a continuous mesh is equivalent to imposing the ordering
constraint [6] in the selection of visibility masks, but not
on the disparity map itself. Note that it is much faster to
compute the continuous case. Moreover, as will be shown
in section 4, always treating disparity maps as continuous
does not affect the quality of the reconstruction in a scene
that breaks the ordering constraint. The relations for right
to left, top to bottom and bottom to top minimization are
obtained similarly.

3.3. Visibility-aware iterative dynamic program-
ming

In the previous section, we discussed visibility computa-
tion along an epipolar line. When working with a 5-camera
cross-shape configuration, illustrated in Fig. 5, we can use
the solution of the previous lines to compute the visibility
of one of the cameras perpendicular to the line being pro-
cessed. The visibility function O for such a camera is com-
puted similarly as that of the camera with correct visibility
along the current line. There is an important difference be-
tween the visibility information coming from the disparity
maps of the previous lines and that from the line currently
being processed: for latter, the disparity map is part of the
minimization process, for the former it is fixed (Fig. 5).

In order to apply smoothing across epipolar lines, we use
Iterative Dynamic Programming (IDP) proposed by Leung

Optimization Mask Visibility

PIX right to left Mc = { (0,1,0,0),(0,0,0,1),(0,1,0,1) } correct
LINE bottom to top Mh = { (1,0,0,0),(0,0,1,0) } heuristic

PIX bottom to top Mc = { (1,0,0,0),(0,0,0,1),(1,0,0,1) } correct
LINE left to right Mh = { (0,1,0,0),(0,0,1,0) } heuristic

PIX left to right Mc = { (1,0,0,0),(0,0,0,1),(1,0,0,1) } correct
LINE bottom to top Mh = { (0,1,0,0),(0,0,1,0) } heuristic

PIX top to bottom Mc = { (1,0,0,0),(0,0,1,0),(1,0,1,0) } correct
LINE left to right Mh = { (0,1,0,0),(0,0,0,1) } heuristic

Figure 6. Visibility masks and their status depending on
the current step. PIX refers to the order inside the line be-
ing solved,while LINE refers to the order in which lines are
processed. In bold are the cameras belonging to Cc. The
camera order in a mask is left,right,top and bottom.

et al.[4]. For binocular stereo, they proceed in two steps:
first they solve along horizontal lines and then along verti-
cal lines. They repeat these two steps until a certain con-
vergence criteria is met. The spatial smoothing term is not
limited to a single line, but uses the last disparity informa-
tion obtained from previous lines, step or iteration. We use
the same smoothing strategy, but proceed in four steps when
solving for lines and columns. In a first step, illustrated in
Fig. 5, we start solving for horizontal lines from bottom to
top, applying dynamic programming (DP) from right to left
inside each line. The visibility computation relies on the
disparity map obtained for the lower lines. In a second step,
we solve for vertical lines from left to right, applying DP
from bottom to top inside each line. Once again, solutions
to previous lines are used for visibility. In the third step, we
solve for horizontal lines from bottom to top, applying DP
from right to left; for the fourth and last step, we solve for
vertical lines from left to right, applying DP from top to bot-
tom. Note that Cc and Mc vary from one step to the next.
Table 6 shows the different masks for which the visibility is
either correct or heuristic depending on the current step.

We also propose a different initialization; in [4], the dis-
parity is initialized to a constant value. However, we do
not use any prior disparity solution, the spatial smoothing
is constrained to the current line during the first step of the
algorithm. For subsequent steps, smoothing is performed
along and across lines based on previously obtained solu-
tions.

An iteration consists of the four steps described above.
After the first iteration, every camera in C has been in Cc

at least once. With a 5-camera cross configuration, in each
step there is exactly one camera along the current epipolar
line for which we have correct visibility at all time. For this
reason, this configuration performs particularly well.

We can iterate to improve the disparity map. Our algo-
rithm does not necessarily converge, as it is possible for the
process to cycle. In practice, we stop after 1 to 8 iterations
since changes are minimal after that. After one iteration,



the algorithm already provides high quality disparity maps.
When using the visibility function of Eq. 6 and hence

representing the disparity map as a continuous mesh, the
asymptotic complexity of the algorithm remains the same
as for ordinary IDP, that is Θ(#P #D2) where #P is the
number of reference pixels and #D the number of dispar-
ity labels. When using the visibility function of Eq. 5,
the asymptotic complexity increases to Θ(#L#P #D2)
where #L is the highest number of pixels in any line. In
our experiments, a continuous mesh representation was al-
ways used.

4. Experimental results

In all our experiments, the matching cost function was
the same for all algorithms, that of [14] which is based on
[2]. In our experiments we used color images; only the ref-
erence images in gray scale are shown here. For the smooth-
ing term, we used the experimentally derived smoothing
function that also comes from [14]:

s(p, r, f(p), f(r)) = λ t(p, r) δ(f(p) − f(r))

where δ is 1 at 0 and 0 elsewhere and t is defined as

t(p, r) =
{

3 if |Iref (p) − Iref (r)| < 5
1 otherwise

.

While we chose the Potts model for smoothing, dynamic
programming can in fact use any model. As previously
mentioned, we added to our method a visibility smoothing,
taking the value 0 if the mask of the current pixel and that of
its neighbor are both in Mc or both in Mh, and the value γ
if they are not. The details are similar mutatis mutandis as
for the usual disparity smoothing (see [4]). The parameters
λ and γ are user-defined smoothness levels. For each dis-
parity map computation, we chose the λ and γ that achieved
the best performance. A pixel disparity is considered erro-
neous if it differs by more than one disparity step from the
ground truth. This error measurement is compatible with
the one used in two comparative studies for 2-camera stereo
[24, 22, 14].

4.1. Tsukuba Head and Lamp scene

This dataset is from the Multiview Image Database from
the University of Tsukuba (Fig. 7). It is composed of a 5×5
image grid. Each image has a resolution of 384× 288. The
search interval is between 0 and 15 pixels and we used 16
disparity steps. The reference image is the center one and
the four supporting images are the closest to it, forming a
cross.

In order to show the validity of our algorithm, we com-
pared our method with other state-of-the-art multi-baseline

Reference Ground Truth

DP−Hybrid (1 iterations)DP−Hybrid (4 iterations)

Ordering Constraint maskBNV−Truth

Figure 7. Disparity maps for various algorithms for the
Head and Lamp scene (Multiview Images database of the
University of Tsukuba). DP-Hybrid was run with a value of
γ = 19. A linear mapping of disparities to gray levels was
used. The mask of pixels breaking the ordering constraint
in at least one supporting camera is also shown.

algorithms. Results from Graph Cut using Nakamura’s vis-
ibility masks are labeled BNV-Heuristic. This is an adap-
tation of [16] where the maximum flow formulation of [21]
was used with the precomputed visibility masks of [17]. We
replaced the maximum flow by the Graph Cut algorithm
of [3] (ranked the best stereo matcher in two comparative
studies [24, 22]), having observed that, for this scene, it
achieves a lower error rate. We also ran a version of the
previous algorithm using IDP instead of Graph Cut as the
optimization method (labeled DP-Heuristic), with 1 and 12
iterations. For the two versions, we tried different sets of
masks Mh and picked the one achieving the best perfor-
mance, namely the one that uses only 2 supporting cameras
in each mask. This set has a total of 6 visibility masks.

Results of our method are shown under the label DP-
Hybrid, with 1 and 4 iterations when using visibility
smoothing, with 1 and 12 iterations when not. The only
difference between DP-Heuristic and DP-Hybrid is the oc-
clusion model. We also compared our algorithm with that
of [14], a method with correct visibility handling (labeled



Algorithm Error
BNV-Truth 1.01%
DP-Hybrid (4 iterations, γ = 19) 1.67%
BNV-heuristic 1.77%
DP-Hybrid (1 iteration, γ = 19) 1.82%
DP-Hybrid (12 iterations, γ = 0) 2.01%
KZ1 2.30%
DP-Heuristic (12 iterations) 2.35%
DP-Heuristic (1 iteration) 2.63%
DP-Hybrid (1 iteration,γ = 0) 2.77%

Figure 8. Percentages of error of the different algorithms
for the Head and Lamp scene, using 5 images. All algo-
rithms use the same matching cost and smoothing function.

KZ1). Its error measurement was taken directly from the
same article. Finally, we computed the disparity maps using
Graph Cut with the exact visibility masks computed in ad-
vance from the ground truth. We labeled this method BNV-
Truth.

Some disparity maps are shown in Fig. 7; all the error
percentages are shown in Fig. 8. Our method with 4 itera-
tions achieved the lowest error rate after BNV-Truth. Even
after one iteration, the error rate is low and requires less
than 4 seconds of running time on a 2.0 GHz Athlon 64
with a non optimized implementation. Figure 8 also shows
the minimal impact of subsequent iterations after the first
when using visibility smoothing. The error goes down with
additional iterations, but only by a small amount. This fig-
ure also shows the impact of visibility smoothing for our
algorithm.

Figure 9 shows a stability analysis of the smoothing pa-
rameter for our algorithm (DP-Hybrid), giving the error per-
centages over a broad range of values.

There are pixels for which the ordering constraint is bro-
ken, in particular in the arm of the lamp (Fig. 7). They were
identified by re-projecting the ground truth in each support-
ing camera. They did not affect our algorithm even if our
visibility computation makes the hypothesis that the order-
ing constraint is respected.

4.2. Others scenes

We used the Plant and the Santa scenes from the
Multiview Image Database of the University of Tsukuba
(Fig. 10). These datasets contain 81 images in a 9 × 9 grid
taken with a camera having a 10 mm focal length. We only
used 5 images in our usual cross configuration. Images were
reduced by a factor of 2 to achieve a resolution of 320×240.
Each disparity map was computed using 24 disparity steps.
For these datasets, the value of γ did not have a significant
impact. We display the results for γ = 0.
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Figure 9. Resistance to change of the smoothing param-
eter for the Head and Lamp scene for one iteration. Both
smoothing parameters increase by a factor of more than
100.

The Plant scene features a lot of occlusion coming from
very thin objects and constitutes a very good test for the
validity of any occlusion model. The red flower is located
at 59cm of the reference camera, the back blue ones at 92cm
and the background at 184cm. The baseline is 20 mm. The
disparity map obtained after only one iteration is shown in
Fig. 10. The running time was under 4 seconds. The results
for 8 iterations are similar.

The second scene features a Santa doll. The hand is lo-
cated at 59 cm of the reference camera and the background
at 184 cm. The disparity map obtained after 8 iterations is
shown in Fig. 10 (it is slightly better than the one obtained
after one iteration). Note the details on the right side of the
hat and on the candle.

5. Conclusion

We have presented a new stereo matching algorithm for
multiple-baseline stereo. Our approach is a hybrid between
the fast methods that use photo-consistency to approximate
correct visibility and slower methods that use correct vis-
ibility. In this paper, we used a Potts model, but the pro-
posed algorithm is flexible enough to be used with any type
of smoothing term. It is fast and also succeeds in obtaining
sharp and well-located depth discontinuities. The validity of
our framework has been demonstrated on standard datasets
with ground truth and compares favorably with other state-
of-the-art occlusion models for multiple-view stereo.

As for future work, we would like to build a real-time im-
plementation using dedicated hardware such as FPGA’s. In



Figure 10. Disparity maps for the Plant and Santa scene
using DP-Hybrid (Multiview Image Database of the Uni-
versity of Tsukuba). A linear mapping of disparities to gray
levels was used.

addition, the extension of this occlusion model to arbitrary
multi-camera configurations and volumetric reconstruction
should be explored.
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