
GRAPH CUT: APPLICATION TO BAYESIAN EMISSION TOMOGRAPHYRECONSTRUCTIONMartin Bonnevilley, Jean Meuniery, S�ebastien Roy�yy DIRO, D�epartement d'Informatique et de Reherhe Op�erationnelle, P.O. 6128, Montr�eal (Quebe), H3C 3J7.� NEC Researh Institute, Prineton, New Jerseye-mail: <bonnevil, meunier, roys>�iro.umontreal.aABSTRACTWe present an appliation of graph uts to Bayesianemission tomography (ET) reonstrution. Themethod is built on the expetation-maximization (EM)maximum a posteriori (MAP) reonstrution. In gen-eral, MAP estimates are hard to assess. For instane,methods suh as simulated annealing annot be em-ployed, beause of the omputational omplexity ofbayesian ET reonstrution. We propose to performa part of the M-step by a maximum-ow omputationin a partiular ow graph. Beause the possible pri-ors (in a maximum-ow approah) are limited to linearfuntion, we have inorporated the estimation of a lineproess that will preserve disontinuities in the reon-strutions. It is the iterative nature of EM that allowsthe introdution of the line proess. The method isillustrated �rst over syntheti data and then over theHo�man brain. 1. INTRODUCTIONMany image restoration algorithms are based on sta-tistial models. The key to suessfully use these algo-rithms resides in onstruting a suitable model of thedegradation (likelihood). However, the model must beregularized to alleviate over�tting and proess outliers.One natural way to ahieve this is to inorporate priorinformation about the desired restoration. This anbe easily done in a Bayesian framework. For instane,Geman and Geman [3℄ proposed to inorporate priorinformation about the orrelation of neighboring pixelsin the image, using Gibbs distribution. A labelling ofthe image is then obtained by omputing the maximuma posteriori (MAP) estimate.Unfortunately, the MAP estimate of an image an-not usully be omputed eÆiently. Many methodshave been proposed to �nd the MAP estimate or anapproximation of it. Simulated annealing [3℄ an, intheory, ompute the MAP estimate, but it is not al-ways omputationally pratial. Iterated onditional

modes (ICM) developed by Besag [1℄ and gradient de-sent tehniques (in the ase of ontinuous labelling)are methods that do not guarantee onvergene to aglobal optimum.Reent developments were done in graph formula-tion of MAP estimate and related energy minimizationproblems [2, 7, 8, 10℄. All these algorithms are basedon the omputation of maximum-ow and the relatedminimum-ut in a spei� type of ow graph. They anbe split into two ategories. In the �rst, the graph for-mulation provides an eÆient method for omputingthe exat global optimum [7, 8, 10℄. However, thesealgorithms are limited to linear prior (linear lique po-tential) whih an oversmooth boundaries, with the ex-eption of [7℄ whih is limited to binary images. Theseond ategory onsists of fast approximation via ap-proximated multi-way ut formulation [2℄. One majorlimitation of this formulation is the restrition of theprior to Pott's model (unordered labelling).In this paper, we propose an original appliation ofa maximum-ow method to ompute the maximizationstep in the Expetation-Maximization Bayesian emis-sion tomography (ET) reonstrution. The approah isbased on the omputation of the maximum-ow and re-lated minimum-ut in a graph similar to [2, 8, 10℄. Be-ause the maximum-ow approah is limited to the useof linear prior, we show how to inorporate a line pro-ess, that preserves disontinuities, in the iterative EMsheme. The line proess is losely related to the in-trodution of ontextual information that are obtainedfrom a previous iteration of the EM algorithm.After a general desription of the Bayesian frame-work, We will present the desription of our optimiza-tion method based on graph ut. We then provide anappliation to Bayesian ET image reonstrution. Inthis appliation, methods suh as simulated annealingare preluded beause of the size of the alulation.We provide a statistial model based on the seminalwork of Shepp and Vardi [11℄ on maximum likelihoodreonstrution for emission tomography and provide



Bayesian formulation similar to Green [6℄ and Gemanand MClure [4℄, with a di�erent prior.2. BAYESIAN FRAMEWORKFor the purpose of the analysis, the image spae is rep-resented by a regular array of pixels indexed by i, wherei 2 S = f0; : : : ; N�1g. We also need to de�ne a neigh-borhood system N = fNi j i 2 Sg. Typially, N is the8-neighbors system. The restoration is formulated asa labelling problem. The restored image orrespondsto a on�guration f = ffi j i 2 Sg taking disretevalues in the set of labels L = f0; : : : ;M � 1g. To en-fore pieewise smoothness, we introdue an unobserv-able line proess l, taking disrete values in f0; 1gM ,into the image model to preserve disontinuities in therestoration [3℄. For instane lii0 = 1 if there is a dison-tinuity between i and i0. Let's formulate our restorationproblem from the Bayes theorem:Pr(f; l j x) / Pr(x j f; l) Pr(f; l);where f is a on�guration, l the line proess and x isthe observation. We are interested to estimate the on-�guration f̂ that maximizes the posterior probabilityPr(f; l j x),f̂ = argmaxf Pr(f; l j x)= argmaxf Pr(x j f) Pr(f; l):This last equation omes from the fat that x is ondi-tionally (given f) independent of l. For the purpose ofoptimization, we reformulate everything into an energyminimization problem; the likelihood and prior energyare Elikelihood(x j f) = � logPr(x j f);Eprior(f; l) = � logPr(f; l): (1)Thus, the MAP estimate is obtained by minimizing thefollowing posterior energy,E(f; l j x) = Elikelihood(x j f) + Eprior(f; l): (2)2.1. Seleting a priorThe prior is onstruted as a Gibbs distribution and isspei�ed by an energy funtion,Pr(f; l) = e�Eprior(f;l)Z ;where Z is a normalizing onstant, alled the partitionfuntion. The energy funtion Eprior(f; l) is the prior
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Figure 1: Geometrial model sheme employed forET. The grid orresponds to the image spae S. Thegrey retangle orresponds to the portion of the im-age viewed by some bin t 2 B. The portion of pixeli viewed by bin t is ati and is outlined in dark grey.energy and it is designed so that the expeted on�g-urations are those for whih typial neighboring pixelshave similar labels. Moreover, we hoose a prior thatfavors pieewise onstant reonstrutions and that pre-serves disontinuities. All these are loal onstraintsthat an be onveniently modeled by a loal omposedfuntion of f and l,Eprior(f; l) = Xi2S Xi02Ni � �(fi � fi0) (1� lii0)+Xi2S Xi02Ni � lii0 ; (3)where � and � are positive onstants and the fun-tion �(u) is nonnegative, even, monotonially inreas-ing and minimized at u = 0. The hoie of � is made inorder to ahieved the desired properties of the on�gu-ration. It must reet some qualitative features aboutthe desired restoration. One feature is smoothnesswithin homogeneous regions of the image. Some ob-vious hoies are �(u) = juj and �(u) = u2. The hoieof �nding the exat MAP estimate by a maximum-owapproah limits our hoie to �(u) = juj. At dison-tinuities (natural boundaries) the energy potential ofpixel i,Pi02Ni � �(fi � fi0) tends to be high and makesboundaries oversmoothed. To orret this problem, wehave inorporated a disrete line proess l. This way,the hosen prior will favor smoothness exept when adisontinuity ours.



2.2. Statistial model for ETIn ET, the image reonstrution task onsists in re-overing emitter densities from a sinogram (projetiondata1). To aomplish this, we must onstrut a modelof the image spae S and of the degradation that o-urs in the observation (projetion data). The pro-jetion data are indexed by t 2 B = f0; : : : ; Tg, whereT = number of angles�number of bins. In �gure 1, wesee a shemati representation of our geometrial modelfor ET. The degradation model assumes the emissionfrom pixel i to be ompletely random. Therefore, thenumber of photons emitted from i and deteted in bint forms independent Poisson proesses in i and t, be-ause eah photon is deteted by at most one bin andthe emissions are independent. Beause the projetiondata are the superposition of independent Poisson pro-esses, it follows that xt, a projetion data, is indepen-dent Poisson distributed random variables,xt � Poisson Xi2S atifi! : (4)As a result, the likelihood, whih is the probability ofthe observation (projetion data) knowing the emitterdensity, is de�ned as,Pr(x j f) =Yt2B �Pi2S atifi�xt exp ��Pi2S atifi�xt! :In this model, the oeÆients ati represent the prob-ability that eah emission from pixel i is deteted indetetor t (see �gure 1). They are assumed knownand they model the geometry of the detetion system.Other major physial fators in ET, suh as attenua-tion and satter, an also be inluded in ati.Instead of onsidering the model of equation (4), itis easier for omputational reasons, to treat it as aninomplete data problem. In fat, it is more diret toestimate f if the unobserved data zti (the number ofphotons emitted from pixel i and reorded in bin t) isknown. Sine an estimate of f allows the distributionof the missing data z to be easily spei�ed, this sug-gests the use of an EM iterative sheme. Iteratively, weperform suessive estimations of z (E-step) and MAPestimates of f aording to the posterior distributionPr(f j z) (M-step). Notie that the Poisson model stillholds for the missing data z, so we havezti � Poisson (atifi) :1We prefer the term projetion data to sinogram, beause theation of deteting in bin t an emitted photon from pixel i issimilar to a projetion.

Proedure MAP EM Algorithm(x : projetion data)f̂ := some initial on�gurationRepeat266664 update the omplete data zaording to equation (7) � (E-step)l̂ = argminl E(f̂ ; l j z)f̂ = argminf E(f; l̂ j z) � (M-step)Until onvergeneFigure 2: Pseudo-ode MAP EM algorithm. Eahrepeat loop is onsidered to be an iteration.and the likelihood an be restated asPr(z j f) = Yi2S; t2B (atifi)zt exp (�atifi)zt! : (5)The orresponding likelihood energy is de�ned byElikelihood(z j f) =Xi Xt (atifi � zti log(atifi)) + onstant:(6)As shown in [6, 9℄, we an estimate (E-step) the miss-ing data zti by setting it to its onditional expetationgiven x and f̂ : ẑti = E(zti j x; f̂)= xt ati f̂iPi02S ati0 f̂i0 ; (7)where f̂ stands for the previous iteration estimate of f .Finally, the M-step onsists in minimizing the posteriorenergy for f and l,E(f; l j ẑ) = Elikelihood(ẑ j f) + Eprior(f; l)= Xi2SXt2B atifi � ẑti log(atifi) +Xi2S Xi02Ni � jfi � fi0 j(1� lii0 ) +Xi2S Xi02Ni � lii0 + onstant: (8)3. MINIMIZING THE POSTERIOR ENERGYWe are interested to hoose (f̂ ; l̂) that minimizes theposterior energy (8), sine MAP estimates are diÆultto ompute in general, we propose a deterministi al-gorithm whih is similar to ICM, but di�ers in the way



it updates the omponents fi of a on�guration f allat the same time. The algorithm (shown in �gure 2)starts with an initial labelling f̂ (0) (typially a maxi-mum likelihood estimation is used). Iteratively (like inICM), we �rst update the line proess while keeping ffrozen to f̂ (n�1) (in equation (8)),l̂(n) = argminl E(f̂ (n�1); l j ẑ):Notie, that the energy is minimized by settingl̂(n)ii0 = � 0; Pi02Ni jf̂ (n�1)i � f̂ (n�1)i0 j � �=�1; otherwise:It remains to minimize over f . We update the lineproess to l̂(n) in equation (8) and then we determinef̂ (n) that minimizesE(f; l̂(n) j ẑ) = Xi2SXt2B atifi � ẑti log(atifi)+ Xi2S Xi02Ni�ii0 jfi � fi0 j+ onstant; (9)where �ii0 = � 0; l̂(n)ii0 = 1�; otherwise; (10)is introdued to better �t our graph formulation of thenext setion. This minimization an be solve globallyfor f by omputing the minimum-ut in a partiularow graph [2, 8, 10℄. In the next setion we desribe theow graph onstrution and explain how the minimumut gives the desired on�guration.3.1. Flow graphLet G = (V ; E) be a ow graph (see �gure 3), where Vis the set of verties and E is the set of weighted edges.The set V is omposed of two types of verties: a set ofon�guration nodes and two distint terminals alledthe soure s and the sink t,V = V 0 [ fs; tg;where V 0 = f(i; k) : i 2 S; k 2 Lg is the set of nodesorresponding to all possible assignments. The stru-ture of the nodes and onnetions in the ow graphG are illustrated in �gure 3 for a 2-neighbor systemN . Two types of edges ompose E , likelihood edgesElikelihood and prior edges Eprior. The set of likelihoodedges generates paths from the soure to the sink,s! (i; 0)! � � � ! (i; k)! � � � ! (i;M)! t;
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K KFigure 3: Flow graph representation of a 1D imagewith 3 pixels fi00; i; i0g (from top to bottom) and 3labels f0; 1; 2g. The minimum ut, omposed of thethik edges, separates the graph into two parts (ingrey), one linked to the soure s (blak nodes) andthe other to the sink t (white nodes). The outgo-ing edges from the soure have in�nite apaities.A likelihood edge assigning label k to pixel i has a-paity ap(i; k) while its orresponding inverse edgehas large onstant apaity K. The prior edges haveapaity �ii0 . Here, label 0 is assigned to pixels iand i00, and label 2 is assigned to pixel i0, yeildingthe on�guration of emitter densities f = f0; 0; 2g.The disontinuity between pixels i and i0 is revealedby the two prior edges in the ut, induing a penaltyost �ii0 j0� 2j.



for all i 2 S. Outgoing edges from the soure shave in�nite apaity to insure they an never be sat-urated. All other likelihood edges (i; k)� (i; k+ 1) areassigned the apaity ap(i; k) suh that ap(i; k) =Pt2B atik � ẑti log(atik) while the orresponding in-verse edges (i; k + 1)� (i; k) are given the apaity K,where K is hoosen to be a large �nite onstant2. Thislarge value is required to insure that suh edges arenever satured, therefore avoiding the possibility of mul-tiple solutions to the labelling problem [2, 8℄. The othertype of edges present in the graph, prior edges Eprior,is de�ned by the neighborhood system employed (N )and generates onnetions between assignments (i; k)and (i0; k) if i0 2 Ni for all i 2 S. The apaity of prioredges is set to �ii0 of equation (10).A ut C � E is a set of edges suh that the soure sand the sink t are separated in the indued graph GC =(V ; E � C). In short, the ut C ontains at least oneedge of every path from the soure s to the sink t. Theapaity (ost) of a ut is simply the sum of the edgeapaities in C. We denote the ost of a ut as jCj. Thekey part of our algorithm is based on the omputationof the minimum ost ut C. Its omputation is ahievedeÆiently by omputing the maximum ow betweenthe soure and the sink. We have hosen Golberg'spreow push relabel algorithm [5℄, whih in our asefeatures an almost linear average omplexity.As shown in [2, 8℄ for similar, but di�erent ow graphformulations, the ost of the minimum ut jCj orre-sponds to the global optimum of equation (9). Beausethe ost of a ut is given by the summation of the edgesit ontains, the optimal on�guration is provided by thelikelihood edges ontained in the minimum ut C. Inbrief, utting a likelihood edge (i; k)� (i; k + 1) orre-sponds to assign label k to pixel i.4. EXPERIMENTS AND RESULTSIn this setion, we ompare the performanes of ourmethod to maximum likelihood EM reonstrution andalso to the standard ICM Bayesian ET reonstrution.Experiments are done on 2D syntheti data (�gure 4)and over the Ho�man brain phantom (�gure 5). Theset of labels L = f0; : : : ; 255g represents normalizedphoton ounts.4.1. Ellipti phantomThe image spae S is a regular grid of 64 � 64 pixels(�gure 4). We performed 64 projetion angles over 180Æand used 64 detetor bins for eah projetion. The bin2For k = M � 1, the likelihood edge is (i; k)� t and there isno inverse edge (see �gure 3).
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(e) (f)Figure 4: (a) Ground truth image. (b) A noisy pro-jetion data obtained from the noiseless projetions,where the horizontal and vertial axes orrespond tothe angles and bins respetively. () Maximum likeli-hood EM reonstrution obtained after 20 iterationsof the algorithm. The normalized posterior energyis 2924.0 and the RMS error is 26.4. (d) ICM MAPEM reonstrution with � = 10:0 and � = 2:0. Thenormalized posterior energy is 66.4 and the RMSerror is 12.4. (e) Maximum-ow MAP EM reon-strution with � = 0:0 and � = 2:0. The normal-ized posterior energy is 77.6 and the RMS error is16.0. (f) Maximum-ow MAP EM reonstrutionwith � = 10:0 and � = 2:0. The normalized posteriorenergy is 34.2 and the RMS error is 11.4.



(a) (b)

(c) (d)Figure 5: (a) Sinogram of the Ho�man brain withativity ratios of 4:1:0 for grey matter, white mat-ter and CSF, respetively. (b) Maximum-ow MAPEM reonstrution with � = 2:0 and � = 10:0. ()Maximum-owMAP EM reonstrution with � = 2:5and � = 10:0. (d) Maximum-ow MAP EM reon-strution with � = 3:0 and � = 10:0.
and pixel width are the same. Finally, we simply addPoisson noise to eah projetion, using the noiselessprojetion values as the Poisson parameter. The phan-tom used and the noisy projetion data are shown in�gure 4 (a) and (b), respetively. In �gure 4 (), we seethe noisy result obtained from the standard maximumlikelihood EM reonstrution method. This image wasgenerated by setting �ii0 = 0 in equation (9) and thenafter running 20 iterations of the algorithm shown in�gure 2 (starting with a at labelling as initial valuefor f̂). The RMS error between the original phantoman the reonstrution is 26:4. The image in �gure 4(d) orresponds to an ICM reonstrution with param-eter � = 2:0 and � = 10:0. The RMS error for theICM reonstrution redues to 12.4. Finally, in �gure4 (e) and (f), we present the reonstrutions obtainedwith the maximum ow approah, one with parame-ter � = 2:0 and � = 0:0 and the other for � = 2:0and � = 10:0. The RMS errors are 16.0 and 11.4, re-spetively. To ompute the posterior energy of thesereonstrutions, we have set the omplete data (z) ofequation (9) to a at image and the parameter were set

to � = 10:0 and � = 2:0. The normalized 3posteriorenergy obtained are for the reonstrution in �gure 4() 2924.0, (d) 66.4, (e) 77.6 and (f) 34.2.4.2. Ho�man brainThe Ho�man brain image spae S is a regular grid of128� 128 pixels (see �gure 5). The ratios of ativitiesin the Ho�man brain are 4:1:0 for grey matter, whitematter and erebrospinal uid (CSF), respetively. 128projetion angles over 180Æ were performed, using 128detetor bins for eah projetion. The bin and pixelsize are the same. Finally, Poisson noise was added tothe sinogram (projetion data) to simulate the degra-dation. In �gure 5 we see the noisy sinogram (a) andthree reonstrutions obtained by the maximum-owMAP EM algorithm: (b) with � = 10:0 and � = 2:0,() with � = 10:0 and � = 2:5 and �nally (d) with� = 10:0 and � = 3:0.5. DISCUSSION AND CONCLUSIONWe have presented a robust method based on graphuts to ompute Bayesian ET reonstrution using sim-ple priors. The method showed great improvement overthe maximum likelihood EM reonstrution by redu-ing the RMS error by 56:7%. It has also shown bet-ter results than ICM with redution of 8:1% of theRMS error. With the maximum ow EM reonstru-tion method, at regions within the images are almostperfetly reovered. However, if the line proess is notused, as in �gure 4 (e), the reonstrution does notbehave as well as it looks (an inrease in energy andRMS error). This problem happens when smoothingis done aross adjaent regions (over boundaries) usinga non-boundary preserving smoothing funtion suh as�(u) = juj. This problem was solved by introduinga line proess in the iterative MAP-EM sheme. Thisproess allows the introdution of ontextual informa-tion and it ould be improved by adding more infor-mation about boundaries, suh as anatomial lassi�-ation of brain tissue. The uses of a ontinuous lineproess estimated from a robust estimator, suh as thetrunated quadrati funtion ould redue some arte-fat reated by the disreteness of the line proess andthe fat that they \freeze" while we optimize over f .Even if the form of the prior is limited, our methodis of great utility, beause the omplexity of ET pre-ludes the use of tehniques suh as simulated anneal-ing. Therefore, the energy funtion has to be min-imized by some deterministi method. With other3Translation and saling with respet to the energy of theground truth.
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