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Abstract

This paper presents a novel algorithm that improves the
localization of disparity discontinuities of disparity maps
obtained by multi-baseline stereo. Rather than associating
a disparity label to every pixel of a disparity map, it asso-
ciates a position to every disparity discontinuity. This for-
mulation allows us to find an approximate solution to a 2D
labeling problem with robust smoothing term by minimiz-
ing multiple 1D problems, thus making possible the use of
dynamic programming. Dynamic programming allows the
efficient computation of the visibility of most of the cameras
during the minimization. Whilst the proposed minimization
strategy is particularly suitable for stereo with occlusion, it
may be used with other labeling problems.

1. Introduction

The goal of binocular stereo is to reconstruct the 3D
structure of a scene from two views. Occlusion occurs when
part of a scene is visible in the reference but not in the sup-
porting camera. The difficulty of detecting occlusion comes
from the fact that it is induced by the 3D structure of the
scene, which is unknown until the correspondence is estab-
lished. When extending binocular stereo to multiple cam-
eras, the amount of occlusion increases since each pixel of
the reference camera can be hidden in more than one sup-
porting camera. This is particularly true when going from
a single to a multiple-baseline configuration. We propose a
novel algorithm that improves the localization of disparity
discontinuities of disparity maps obtained by multi-baseline
stereo. For some applications such as augmented reality,
well-localized borders are indeed very important. The algo-
rithm computes simultaneously the border localization and
most of the visibility information. Heuristics may be re-
quired to establish camera visibility for a small subset of
the cameras.

The rest of this paper is divided as follows: in Section 2,
previous work is presented. Section 3 describes our algo-
rithm. Visibility is discussed in Section 4. Experimental
results are presented in Section 5.

2. Previous work

In Egnal [8], five basic strategies to overcome occlu-
sion for two cameras are presented: left-right checking, bi-
modality test, goodness Jumps constraint, duality of depth
discontinuity and occlusion, and uniqueness constraint.
Some algorithms rely on one or more of the these strate-
gies, and are often based on varying a correlation window
position or size [14, 10, 32, 15]. Other algorithms use dy-
namic programming [21, 12, 5]. Two methods using graphs
[13, 16] have been proposed. In [29], visibility and dispar-
ity are iteratively minimized using belief propagation. Most
of these methods are binocular in nature and do not general-
ize well to the case of multiple cameras. Some researchers
have proposed specially designed algorithms to cope with
occlusion in multiple camera configurations. They can be
coarsely divided into three categories. Some approaches
are based on the heuristic that a low matching cost function
implies the absence of occlusion [15, 20, 25, 23]. Others
guarantee a solution that is geo-consistent [7, 18, 28, 9, 17].
These approaches preserve the consistency between the re-
covered visibility and the geometry [7]. Finally, some algo-
rithms are mixes between heuristic and geo-consistent algo-
rithms [6, 34, 11].

Many discrete optimization methods have been applied
to stereo [4, 19, 30]. Our minimization strategy is similar to
[4, 19]. All these methods find iteratively a disparity for a
subset of the pixels while keeping the disparity of the others
fixed. Nevertheless, our approach does not work directly on
the disparity map; it works on the localization of the discon-
tinuities. The two main differences between our approach
and active contour ones are the discrete formulation and the
absence of constraints on the smoothing term [22].

3. Formulation

We have a setP of reference pixels, for which we want
to compute disparity, and a setD of disparity labels. A
D-configurationf : P 7→ D associates a disparity label
to every pixel. When occlusion is not modeled, the energy
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Figure 1. Representation of a disparity map with vertical line par-
titioning.

function to minimize is

E(f) =
∑

p∈P

e(p, f(p))

︸ ︷︷ ︸

pixel

likelihood

+
∑

p∈P

∑

p′∈Np

s(p,p′, f(p), f(p′))

︸ ︷︷ ︸

pixel smoothing

(1)
whereNp is pixel p’s neighborhood, which can be 4- or
8-connected. When the smoothing term is robust, the mini-
mization of Eq. 1 is an NP-hard problem [4].

We partition the reference image into the setL of its ver-
tical or horizontal lines, where each lineλ is a vector of
pixels(pλ

1
, . . . , pλ

N ), N being the number of pixels on each
line. Two lines are neighbors if two of their pixels are. The
neighborhood of lineλ is denotedNλ and is 2-connected
whenNp is 4- or 8-connected. If there are only 2 differ-
ent disparity values and a single disparity discontinuity in a
line then there is only onediscontinuitypixel pλ

d in the line
λ preceding a pixel with a different disparity (see Fig. 1). A
B-configurationb : L 7→ B associates adiscontinuitypixel
to every line. The setB is simply {1,2,. . . ,N} and repre-
sents the index of thediscontinuitypixel. There areN − 1
possible discontinuity locations and it is possible for a line
to have no discontinuity at all, which correspond to the label
N .

We defineE to be the set containing the two end pixels of
every line. If we have an endpoint disparity mapf ′ that as-
sociates a disparity to every pixel inE and aB-configuration
b, then we can defineFb,f ′ to be the correspondingD-
configuration. Similarly,Bf is theB-configuration associ-
ated withf (sincef may have more than one discontinuity
on one of its lines,Bf is not always well-defined). For an
endpoint disparity mapf ′, allowing only one discontinuity

per line, the energy to minimize is

Ef ′(b) =
∑

λ∈L

ef ′(λ, b(λ))

︸ ︷︷ ︸

discontinuity

likelihood

+
∑

λ∈L

∑

λ′∈Nλ

sf ′(λ, λ′, b(λ), b(λ′))

︸ ︷︷ ︸

inter-line smoothing

(2)
with respect tob, whereef ′ contains the likelihood of pixels
one the same line and intra-line smoothing, i.e. the smooth-
ing of neighboring pixels belonging to the same line (see
Fig. 1). The inter-line smoothing (see Fig. 1) is the pixel
smoothing of neighboring pixels belonging to different lines
(see Fig. 1). Note thatEf ′(b) = E(Fb,f ′). The neighbor-
hood used in Eq. 2 is 2-connected making the minimization
easy assumingf ′ known andBf well-defined. Standard
stereo algorithms find sharp discontinuities but often they
are not well localized in areas with occlusion [6]. Never-
theless, disparities on each side of these discontinuitiesare
generally well recovered and provide reasonable endpoint
disparity mapsf ′ for the minimization ofEf ′(b) to yield a
good global disparity map.

BORDER-CUT(f)
1 repeat
2 change← 0
3 for R ⊂ P such thatBf |R is well-defined
4 do Computef ′ from f |R
5 E ← minb [Ef ′(b) + RR(f |RC , Fb,f ′)]
6 b⋆ ← the minimum in the above formula
7 if E < Ef ′(Bf |R) + RR(f |RC , f |R)
8 then change← 1
9 Updatef usingFb⋆,f ′

10 until change = 0
11 return f

Figure 2. Overview of the Border-Cut algorithm

3.1. The Border Cut Algorithm

In a disparity map, there is generally more than one dis-
continuity on a line of pixels. Our algorithm does not work
on whole lines but only on segments containing onedis-
continuityand centered around it. Two segments are neigh-
bors if two of their pixels are and if they belong to different
lines. A line sweeping strategy is used to choose the seg-
ments whose pixels will form theactivesubsetR of the set
of pixels P, for which the localization of borders will be
improved. This is done while keeping the disparity of other
pixels (calledpassive) fixed. The smoothing betweenac-
tive andpassivepixels is denotedRR(f |RC , Fb,f ′), where
RC is the complement ofR, i.e. P − R. Let us describe
this process for horizontal lines swept from left to right. We
first pick a disparityδ and only considerdiscontinuitiesbe-
tween a pixel with disparity smaller thanδ and one with



disparity greater than or equal toδ. We call such adiscon-
tinuity a δ-discontinuity. We find the leftmost horizontalδ-
discontinuity. We then recursively collect neighboring seg-
ments withδ-discontinuities to formR, making sure there
is at most one segment on each line. Having an initial dis-
parity mapf , we can minimize Eq. 2 on this set. This mini-
mization, which we callborder move, occurs on line 5 of the
algorithm outlined in Fig. 2. The disparity map is then up-
dated (line 9) and we start the above procedure again from
the next leftmost unprocessedδ-discontinuity. This is re-
peated until allδ-discontinuities have been processed. This
line sweeping strategy is also repeated in the other three di-
rections with the sameδ. Finally, this process is done for all
values ofδ.

We call the execution of the outer loop (line 1 to 10) a
cycle. Note that each time we updatef on line 9, the energy
Ef ′ decreases or remains the same. At eachcyclebefore
the last, the energy decreases by at least the minimum cost
of changing the label of a pixel, thus ensuring convergence.
In practice, convergence is obtained after only a few cycles.
After the last, a local minimum with respect to aborder
moveis found.

To compute the value of thediscontinuitylikelihood term
for all possible discontinuity locations, we only need to scan
all the pixels on a line once. Since only 2 pixels have their
disparity changed when the discontinuity is moved by 1
pixel, the likelihood termef can be efficiently recursively
computed. The same technique can be used for the com-
putation of the smoothing term. Consequently, eachborder
moveis in Θ(#L · N2) when Eq. 2 is minimized using dy-
namic programming. In our tests, we used segments of up
to 19 pixels.

The algorithm may remove disparity discontinuities, but
never adds new ones. Discussion about initialization is post-
poned until section 5.1.

4. Visibility

To model occlusion, we must compute the volumetric
visibility Vc(p, δ, f) of a 3D reference point formed from
the pixelp at disparityδ from the point of view of a camera
c, given a disparity configurationf . It is set to 1 if the point
is visible, and 0 otherwise. The visibility information is
collected into a vector, thevisibility mask

V (p, δ, f) = (V1(p, δ, f), . . . , VC(p, δ, f))

whereC is the number of cameras outside the reference; a
vector (1, . . . , 1) means that the 3D point is visible in all
supporting cameras. We callM the set of all possible visi-
bility masks; anM-configurationg : P 7→ M associates a
mask to every pixel. The visibility masks arecorrectwhen
g satisfies

g(p) = V (p, f(p), f) (3)

for all p ∈ P. As in [7], we transform Eq. 1 into an energy
function with masks

E(f, g) =
∑

p∈P

e(p, f(p), g(p)) + smoothing

and Eq. 2 into

Ef ′(b, g) =
∑

λ∈L

ef ′(λ, b(λ), g|λ) + smoothing. (4)

Mutatis mutandis, our newef ′ is the discontinuitylikeli-
hood term that uses the pixel likelihood with masks. Since
we expect masks belonging to adjacent pixels to be spa-
cially coherent, we can add a visibility smoothing term that
penalizes the change of visibility status between adjacent
pixels. However, no visibility smoothing was used in the
results presented in this paper.d i s c o n t i n u i t y l a b e l

l i n e
d e p t hd i s c o n t i n u i t yf a rn e a r

λ ! 1 λλ ! 2λ ! 3λ ! 4λ ! 5λ ! 6d ! 1dd + 1
b λ , 1 , d

Figure 3. DP matching process. To determine the best discontinu-
ity map up to lineλ with discontinuity atd, for the various discon-
tinuity locations onλ−1, we look at the best solution up toλ−1,
available by construction. An example of abλ−1,d is illustrated.

4.1. Optimizing discontinuity and visibility

The algorithm works by using dynamic programming
(DP) applied perpendicularly to the orientation of the lines
in L. For instance, if the lines are vertical then DP proceeds
horizontally either from left to right or right to left. We illus-
trate this for vertical lines processed from left to right. The
cameras are assumed to be in a cross-shaped configuration,
with the reference in the center and the 4 supporting images
at an equal distance from it. The order of the cameras in the
mask is left, right, top and bottom.

When dynamic programming attempts to compute the
location of the discontinuity of lineλ, it can rely on knowl-
edge of the location of the discontinuities of all preceding
lines (Fig. 3). Because of this, the visibility between any
camera to the left of the reference and the 3D point formed
by pixelsp

λ
i at any disparity is also known (Fig. 4). Two



similar strategies for binocular and multi-camera stereo
were presented in [1, 6] respectively. These approaches
minimize Eq. 1 directly, whilst we minimize Eq. 2, allowing
the use of much more visibility information. Since the dis-
parity ofpassivepixels is fixed during the minimization pro-
cess, the visibility of the bottom and top cameras is known
for each pixel of the line being examined. Figure 4 illus-
trates the visibility information available when processing a
disparity map with our Border-Cut algorithm.

When solving the discontinuity localization problem,
two 2-dimensional tablest and t′ are filled out;t(λ, d) is
the lowest energy of all discontinuity maps of lines0 to λ

with line λ having itsdiscontinuityatd; t′(λ, d) is the index
of the discontinuityof λ − 1 given by this map of lowest
energy, denotedbλ,d. A sample discontinuity mapbλ−1,d is
highlighted in Fig. 3 and is also shown in Fig. 4. The table
t′ is used to compute the differentbλ,d’s.

Explicitly, the tablest andt′ are defined inductively as

t(0, d) = ef ′(0, d, g|λ0
)

t′(0, d) = d

and forλ > 0

t(λ, d) = min
d′∈B







ef ′(λ, d, g|λ)
+ sf ′(λ − 1, λ, d′, d)
+ rR,f ′(λ, d)
+ t(λ − 1, d′)







t′(λ, d) is the index of the minimum
in the above formula

whererR,f ′(λ, d) is the smoothing between the pixels of
line λ having it discontinuityat d and passivepixels sur-
rounding it. The visibility masks are

g(pλ
i ) = (O1(i, λ, d, d′), . . . , O4(i, λ, d, d′))

whereOc(i, λ, d, d′) is a visibility function that is equal to
1 iff the camerac is visible from pixelpλ

i (see next section).
For mostc’s, it only requires the knowledge ofbλ−1,d′(λ′)
for λ′ < λ and ofpassivepixels. Thebλ,d’s can be com-
puted with the relations

bλ,d(λ) = d

bλ,d(λ
′) = t′(λ′ + 1, bλ,d(λ

′ + 1)) for 0 ≤ λ′ < λ.

It is thus possible to computebλ−1,d′(λ′) for all λ′ < λ and
d′ ∈ B. This allows us to compute visibilityOc(i, λ, d, d′)
for all d′ and for most of thec’s and finallyt(λ, d).

4.2. Computing visibility

We defineOc(i, λ, d, d′) as the visibility of camerac for
pixel pλ

i , for thediscontinuitymap defined on lines0 to λ

having itsdiscontinuityon lineλ atd and having the lowest
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Figure 4. Visibility information available when searching for the
location of thediscontinuitypixel of vertical lineλ using DP from
left to right. The visibility of the left camera is available by con-
struction whilst right visibility is unknown since border localiza-
tion for lines to the rigth ofλ is not yet computed. Top and bottom
visibilities are always available since they only depend on dispar-
ity of pixels on the line being examined and ofpassivepixels.

energy amongst those withdiscontinuityd′ on λ − 1, i.e.
the disparity mapbλ′,d′ extended toλ by placing itsdiscon-
tinuity atd. We show how to compute the visibility function
O1 for the left camera assuming that all segments are per-
fectly aligned, i.e. there is nopassivepixel in the bounding
rectangle of the regionR.

We first introduce the auxiliary functionS1(i, λ, d) that
represents how far theshadowof all the pixels to the left of
p

λ
i andp

λ
i itself goes, for the discontinuity map of lowest

energy defined on lines up toλ with a discontinuity onλ at
d. Explicitly,

S1(i, 0, d) = max

{

max
λ′<0

(

f |RC (pλ′

i ) + λ′
)

, Fb0,d,f ′(p0

i )

}

S1(i, λ, d) = max

{

S1(i, λ − 1, bλ,d(λ − 1)),

Fbλ,d,f ′(pλ
i ) + λ

}

for λ > 0

where the negativeλ′’s are the lines ofpassivepixels to
the left of the first (zeroth!) active one (of courseFbλ,d,f ′

is only defined on lines0 to λ). When the segments are
not aligned, the disparity ofpassivepixels can be needed to
computeS1 even forλ greater than 0. We leave the modifi-
cations to the reader. This recursive computation ofS1 used
a continuous mesh representation of the disparity map. A
consequence of this is that the ordering constraint is applied
in the selection of visibility masks, but not on the disparity
map itself. Now,O1 is simply defined as

O1(i, λ, d, d′) =

{

1 if δf ′(i, λ, d) + λ > S1(i, λ − 1, d′)

0 otherwise



whereδf ′(i, λ, d) is the disparity ofpλ
i when the discon-

tinuity of λ is at d, given f ′. O1 is equal to 1 when the
left camera is visible. The corresponding relations for the
top and bottom ones are obtained similarly except that they
only use disparity of the pixels of the current line and of
passivepixels. For the right camera, no visibility informa-
tion is available. Because it has been noticed that removing
a camera that is visible is far less damaging than keeping a
camera that is not [20], the right camera is only used when
no others are. In multi-baseline stereo, it is reasonable to
expect every pixel of the reference to be visible by at least
one supporting camera. This use of a heuristic can make the
Border-Cut algorithm oscillate, but after one or two cycles,
changes are negligible.

Note that when the cameras are located on only 2 non
opposite sides of the reference (for example top and left),
the direction for which DP processes horizontal and ver-
tical lines can always be chosen so that the visibility is
handledcorrectly. With these camera configurations, the
Border-Cut algorithm finds a local minimum, with respect
to aborder move, to energy function 4 respecting the con-
straint 3. The pixel likelihood term takes a user-defined oc-
clusion cost when no camera is visible. Note that during a
border move, the masks ofpassivepixels may change. This
should be considered in the termrR,f ′ . However in our
tests, ignoring this did not have an impact on the quality
of the solutions. The explanation comes from the fact that
close objects are generally enlarged by stereo matchers [7].
Sinceborder movesusually correct this,passivepixels have
a tendency to regain cameras rather than the opposite, a phe-
nomenon that has little impact as mentioned above [20].

5. Experimental results

In all our experiments, the matching cost function used
came from [17] which is based on [2]. We used color im-
ages but only the references in gray scale are shown here.
As for the smoothing term, we used the experimentally de-
fined smoothing function that also comes from [17]:

s(p,p′, f(p), f(p′)) = γ h(p,p′) l(f(p) − f(p′))

whereh is defined as

h(p,p′) =

{
3 if |Iref (p) − Iref (p

′)| < 5
1 otherwise

wherel is 1 at 0 and 0 elsewhere.Iref (p) is the intensity
of pixel p in the reference image. The parameterγ is user-
defined. A pixel disparity is considered erroneous if it dif-
fers by more than one step from the ground truth. This error
measurement was used in two comparative studies [31, 27].

5.1. Tsukuba Head and Lamp

This dataset is from the Multiview Image Database from
the University of Tsukuba (see Fig. 5). It is composed of a

5×5 image grid. Each image has a resolution of384×288.
The search interval was between 0 and 15 pixels and we
used 16 disparity steps. The 5-camera configuration is a

Figure 5. Reference images for the Head and Lamp ( top left) and
ground truth (top right) from the Multiview Images database of the
University of Tsukuba. Disparity map obtained from GEO-BNV
(middle left) and the improvement obtained after applying our al-
gorithm (middle right). Disparity map of Hybrid-IDP with 36 %
corruption (bottom left) and result after applying our algorithm
(bottom right).

cross with 4 cameras equidistant to the center one (the refer-
ence). The 3-camera configuration is obtained from the pre-
vious one by removing the top and bottom cameras. Some
disparity maps are shown in Fig. 5 and error percentages are
given in Table 6. The entries ASYM-KZ1 and KZ1’ come
directly from [34]. HYBRID-IDP and NAKA-BNV come
from [6]. The disparity map for the latter was not available,
so we could not use it to initialize our algorithm. GEO-
BNV and REL-DP come from [7] and [11] respectively. All
these occlusion modeling methods are multi-baseline and
used 5 cameras. Our algorithm lowered the error rate with
all initializations. We also initialized with the current best
two algorithms (SEG+VIS [3], SYMBP+OCC [29]) of the
Middlebury Stereo Evaluation - (Version 2) [26]. The fast
TREEDP based on dynamic programming was used as well
[33]. We provide results obtained with a fixed smoothing
parameter for all the different initializations, with the 3- and
5-camera configurations. We also provide those computed



with the best parameter for each disparity map computation.
Of interest is the fact that results are comparable no mat-
ter which initial stereo matcher was used, even when this
matcher only utilized two cameras without occlusion mod-
eling. Only onecyclewas performed with segments of up
to 11 pixels; the running time was below 19 seconds on an
AMD Athlon(tm) 64 Processor 3500+, even though we did
not computeef ′ andsf ′ recursively as described at the end
of section 3.1. Note in Fig. 5 how a few pixels with correct
disparity between the branches of the arm of the lamp were
enough to allow Border-Cut to recover the disparities of this
region correctly. When using three cameras with the fixed
parameter, we could not reduce the error rate of SEG+VIS
and KZ1’. Nevertheless, we saw a significant improvement
when the best parameter was used. On this dataset, the sen-
sitivity to initialization and to change of the smoothing pa-
rameter is reduced when the number of cameras increases
from three to five. The reduced sensitivity of multi-baseline
stereo to change of the smoothing parameter was also men-
tioned in [34].

Initialization algorithm Before After B-C
with number of B-C 5 cameras 3 cameras
cameras used fixed γ bestγ fixed γ bestγ

NAKA-BNV(5 cam’s) 1.70 - - - -
GEO-BNV(5 cam’s) 2.23 1.17 1.07 1.48 1.44
HYBRID-IDP(5 cam’s) 1.67 1.09 1.09 1.17 1.17
REL-DP(5 cam’s) 1.86 1.13 1.07 1.24 1.11
KZ1’(5 cam’s) 1.28 1.06 1.04 1.77 1.19
ASYM-KZ1(5 cam’s) 1.30 1.11 1.08 1.09 1.08
SEG+VIS(2 cam’s) 1.57 1.11 1.07 1.69 1.08
SYMBP+OCC(2 cam’s) 1.75 0.96 0.96 1.02 1.02
TREEDP(2 cam’s) 2.84 1.04 1.04 1.05 0.96

Average - 1.08 1.05 1.31 1.13

Figure 6. Percentage of error in disparity for all pixels of the differ-
ent algorithms for Head and Lamp scene, before and after applying
Border-Cut, using 3 and 5 images.

Figure 7 shows the sensitivity to change of the smoothing
parameter and to the quality of the initial disparity map of
our algorithm, using HYBRID-IDP for initialization. The
probability of a pixel to becorrupted(i.e. having its dis-
parity changed to one picked at random from a uniform dis-
tribution) ranges from 0 to 80%. When used with multi-
baseline camera configurations, our algorithm is very stable
to change of the smoothing parameter. Withoutcorruption,
the error stays below 3.7% forγ ranging from 0 to 100.
Moreover, even when pixels have a 36% chance of being
corrupted, the error rate remains below 1.40% (see Fig. 5).
It is thus very resistant tocorruption of the initial dispar-
ity map even when a singlecycle is performed. Since our
approach does not add new discontinuities but may remove
existing ones and since it is robust tocorruption, we can
start with an under-smoothed initial disparity map in order
to avoid missing small objects. In our tests, this was not
necessary.
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Figure 7. Variation of the error rate as a function of smoothing and
pixel corruption.

5.2. City scene

This dataset from the Multiview Image Database of
the University of Tsukuba (Fig. 8) contains 81 images of
640 × 480 in a 9 × 9 grid. We only used 5 images in a
cross configuration. Each disparity map was computed us-
ing 44 disparity steps and the search interval was between
0 and 43 pixels. Twocycleswere performed with segments
of up to 11 pixels; the running time was below 92 secondes
on an AMD Athlon(tm) 64 Processor 3500+. Some dis-
parity discontinuities present in the reference were manu-
ally segmented to create a partialdiscontinuityground truth.
A discontinuity location is considered erroneous if it dif-
fers by more than one pixel from the ground truth. This
is motivated by the fact that discontinuities in a scene are
not perfectly aligned with the pixel grid. The different 5-
camera algorithms used to initialize Border-Cut come from
[7] and [6], whilst the 2-camera algorithms BNV and MF
came from [4] and [24] respectively. The results are pre-
sented in Table 9 and some disparity maps are shown in
Fig. 8. The percentage of pixels with a change in disparity
greater than one for GEO-MF before and after Border-Cut
is only 0.71%. Nevertheless, the improvement in border
localization after applying Border-Cut is significant. Note
that a correct discontinuity location does not imply that the
disparities on both sides are correct as well.

5.3. Middlebury Binocular Comparative Study

To improve border localization, our Border-Cut algo-
rithm is more appropriate for multi-baseline stereo config-
urations, since in binocular stereo, occlusion affects thelo-
calization of depth discontinuities on only on side of ob-
jects. Nevertheless, we provide results for the stereo pairs
of the new Middlebury comparative study. We use as ini-



Figure 8. Reference image for the City scene (top left) from the
Multiview Images database of the University of Tsukuba. Some
manually segmented disparity discontinuities (top right). Dispar-
ity map obtained from GEO-MF (bottom left) and improved by
Border-Cut (bottom right). Regions of interest are framed (see
high resolution images in the electronic version of this paper for
small details).

tialization the results obtained from BNV-OCC, KZ1, BNV
and TREEDP coming from [16],[17], [27]-c and [33] re-
spectively. The first two methods model occlusion, whilst
the others do not. They all use the same smoothing model
and similar cost function as that of our Border-Cut algo-
rithm. Results are shown in Fig. 11. Border-Cut, when
used on binocular stereo, is more sensitive to change of the
smoothing parameter and occlusion cost (the latter is not
even used in multi-baseline Border-Cut). The algorithm is
also more sensitive to the initialization. Nevertheless, the
average error reduction for BNV-OCC and KZ1 are repec-
tively 0.48 and 0.21. For BNV and TREEDP, the error
reduction is 1.61 and 1.88 respectively. As expected, the
error reduction is more significant for algorithms that do
not model occlusion. For TREEDP the error in disparity in
discontinuity regions (as defined by the Middlebury Stereo
Evaluation - Version 2 ) for the Venus scene was reduced
from 7.74% to 2.22% (see Fig. 10). The improvement in
discontinuity regions is even greater for algorithms known
for having trouble with them, such as the one of [24]. For
this particular case, the error rate was reduced from 21.5%
to 4.61%. The increase of the error rate on the Tsukuba
scene for KZ1 is caused by the fact that the same smoothing
parameter was used for all four scenes, the one minimizing
the average error.

6. Conclusion

We have presented a new algorithm to improve discon-
tinuity localization of the disparity maps obtained from

Algorithm Before B-C (bestγ) After B-C (fixed γ)

FULL-MF (5 cam’s) 22.3 11.7
FULL-BNV (5 cam’s) 19.8 11.1
GEO-MF (5 cam’s) 23.2 10.4
GEO-BNV (5 cam’s) 15.4 11.4
Hybrid-IDP (5 cam’s) 28.2 14.7
BNV (2 cam’s) 21.4 9.8
MF (2 cam’s) 30.5 9.8

Figure 9. Percentage of error in the discontinuity location of the
different algorithms for City scene, before and after Border-Cut,
using 5 images.

multi-baseline stereo. From an initial disparity map, the al-
gorithm associates a position to every disparity discontinu-
ity, instead of a disparity label to every pixel. This formula-
tion allows to find an approximated solution to a 2D labeling
problem with a robust smoothing term by minimizing mul-
tiple 1D problems. We showed how to include efficiently
visibility computation into each 1D minimization using dy-
namic programming. Our method obtains sharp and well-
located disparity discontinuities starting from the output of
a wide range of stereo matchers. For binocular algorithms
and those that do not model occlusion, the improvement af-
ter applyingBorder-Cutis significant to the point where the
final results are indistinguishable from those obtained af-
ter initializing with multi-baseline methods with occlusion
modeling. Moreover, our framework, when used with cer-
tain camera configurations, guarantees thecorrectvisibility.
The validity of our framework was demonstrated on stan-
dard datasets with ground truth and was compared to other
state-of-the-art multi-baseline stereo matchers. For future
work, better ways of defining and extracting borders should
be found. Applications of the Border-Cut algorithm to other
vision problems should also be investigated.
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