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Abstract 2. Previous work

This paper presents a novel algorithm that improves the  In Egnal [8], five basic strategies to overcome occlu-
localization of disparity discontinuities of disparity & sion for two cameras are presented: left-right checking, bi
obtained by multi-baseline stereo. Rather than assodatin modality test, goodness Jumps constraint, duality of depth
a disparity label to every pixel of a disparity map, it asso- discontinuity and occlusion, and unigueness constraint.
ciates a position to every disparity discontinuity. Thisfo Some algorithms rely on one or more of the these strate-
mulation allows us to find an approximate solution to a 2D gies, and are often based on varying a correlation window
labeling problem with robust smoothing term by minimiz- position or size [14, 10, 32, 15]. Other algorithms use dy-
ing multiple 1D problems, thus making possible the use of namic programming [21, 12, 5]. Two methods using graphs
dynamic programming. Dynamic programming allows the [13, 16] have been proposed. In [29], visibility and dispar-
efficient computation of the visibility of most of the cansera ity are iteratively minimized using belief propagation. 810
during the minimization. Whilst the proposed minimization of these methods are binocular in nature and do not general-
strategy is particularly suitable for stereo with occlusjat ize well to the case of multiple cameras. Some researchers
may be used with other labeling problems. have proposed specially designed algorithms to cope with

occlusion in multiple camera configurations. They can be

coarsely divided into three categories. Some approaches
1. Introduction are based on the heuristic that a low matching cost function

implies the absence of occlusion [15, 20, 25, 23]. Others

The goal of binocular stereo is to reconstruct the 3D garantee a solution that is geo-consistent [7, 18, 28,]9, 17
structure of a scene from two views. Occlusion occurs whenThese approaches preserve the consistency between the re-
part of a scene is visible in the reference but not in the sup-cqyered visibility and the geometry [7]. Finally, some algo

porting camera. The difficulty of detecting occlusion comes rithms are mixes between heuristic and geo-consistent algo
from the fact that it is induced by the 3D structure of the rithms [6, 34, 11].

scene, which is unknown until the correspondence is estab-

lished. When extending binocular stereo to multiple cam-

eras, the amount of occlusion increases since each pixel ofo stereo [4, 19, 30]. Our miljimi;ation strategy is s.imitart
the reference camera can be hidden in more than one sup[4’ 19]. All these methods find iteratively a disparity for a

porting camera. This is particularly true when going from sfubset of the pixels while keeping the disparity of the ather
a single to a multiple-baseline configuration. We propose aﬂxed: Nev_ertheles_s, our approach doe_s not work dlrgctly on
novel algorithm that improves the localization of disparit the gl_lsparlty map; It W(_)rks_ on the localization of the discon
discontinuities of disparity maps obtained by multi-base| tinuities. The two main differences between our approach

stereo. For some applications such as augmented reality‘?‘nd active contourc_mes are the discrgte formulation and the
well-localized borders are indeed very important. The algo 2°Sence of constraints on the smoothing term [22].

rithm computes simultaneously the border localization and

most of the visibility information. Heuristics may be re-

quired to establish camera visibility for a small subset of 3. Formulation

the cameras.

The rest of this paper is divided as follows: in Section 2,  We have a seP of reference pixels, for which we want
previous work is presented. Section 3 describes our algo-to compute disparity, and a s&t of disparity labels. A
rithm. Visibility is discussed in Section 4. Experimental D-configurationf : P — D associates a disparity label
results are presented in Section 5. to every pixel. When occlusion is not modeled, the energy

Many discrete optimization methods have been applied
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o= discontinuity with respect td, wheree contains the likelihood of pixels
pixel one the same line and intra-line smoothing, i.e. the smooth-

ing of neighboring pixels belonging to the same line (see
Ei_gur_e 1. Representation of a disparity map with vertical line par- Fig. 1). The inter-line smoothing (see Fig. 1) is the pixel
tiioning. smoothing of neighboring pixels belonging to differenttin
(see Fig. 1). Note thaE; (b) = E(F, ;). The neighbor-
hood used in Eqg. 2 is 2-connected making the minimization
easy assuming’ known andB; well-defined. Standard
stereo algorithms find sharp discontinuities but often they
are not well localized in areas with occlusion [6]. Never-
theless, disparities on each side of these discontinuities
generally well recovered and provide reasonable endpoint
disparity mapsf’ for the minimization ofE'; (b) to yield a
good global disparity map.

function to minimize is
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where N}, is pixel p’s neighborhood, which can be 4- or 4 C;)Or Coingtség frori fﬂ? s wel-aetine
8-connected. When the smoothing term is robust, the mini- .
- : 5 E — miny [Ey/ (b) + Rr(f|re, Fo,p)]
mization of Eq. 1 is an NP-hard problem [4]. 6 b* « the minimum in the above formula
7 if £ < Ey(Byfiz) + Rr(flre, fIr)
We partition the reference image into the Seif its ver- 8 then change «— 1
tical or horizontal lines, where each lineis a vector of 9 Updatef using Fy«

pixels (p3, ..., py), N being the number of pixels on each 10  until change =0

line. Two lines are neighbors if two of their pixels are. The 11 retumn f

neighborhood of line\ is denotedV) and is 2-connected _ _ _
when\, is 4- or 8-connected. If there are only 2 differ- Figure 2. Overview of the Border-Cut algorithm
ent disparity values and a single disparity discontinuitg i
line then there is only ondiscontinuitypixel p;) in the line

A preceding a pixel with a different disparity (see Fig. 1). A 3.1. The Border Cut Algorithm

B-configurationb : £ — B associates discontinuitypixel In a disparity map, there is generally more than one dis-
to every line. The seB is simply {1,2,...,N and repre-  continuity on a line of pixels. Our algorithm does not work
sents the index of thdiscontinuitypixel. There areV — 1 on whole lines but only on segments containing alie

possible discontinuity locations and it is possible forreeli  continuityand centered around it. Two segments are neigh-
to have no discontinuity at all, which correspond to thelabe bors if two of their pixels are and if they belong to different
N. lines. A line sweeping strategy is used to choose the seg-
ments whose pixels will form thactivesubsetR of the set
We definef to be the set containing the two end pixels of of pixels P, for which the localization of borders will be

every line. If we have an endpoint disparity mgpthat as- improved. This is done while keeping the disparity of other
sociates a disparity to every pixel§hand ai3-configuration pixels (calledpassivé fixed. The smoothing betweeat-
b, then we can defing}, s to be the correspondingp- tive andpassivepixels is denotedz ( f|rc, Fy, s/ ), Where

configuration. Similarly,B; is the B-configuration associ- RC is the complement oR, i.e. P — R. Let us describe
ated withf (sincef may have more than one discontinuity this process for horizontal lines swept from left to righte W
on one of its linesB; is not always well-defined). For an first pick a disparityy and only considediscontinuitiesbe-
endpoint disparity mag’, allowing only one discontinuity ~ tween a pixel with disparity smaller thahand one with



disparity greater than or equal o We call such aliscon- forall p € P. Asin [7], we transform Eq. 1 into an energy

tinuity a 0-discontinuity. We find the leftmost horizont& function with masks

discontinuity. We then recursively collect neighboring-se

ments withs-discontinuities to forni?, making sure there E(f,9) =Y _ e(p, f(p), 9(p)) + smoothing
is at most one segment on each line. Having an initial dis- pEP

parity mapf, we can minimize Eq. 2 on this set. This mini-
mization, which we calborder moveoccurs on line 5 of the
algorithm outlined in Fig. 2. The disparity map is then up- ;

dagted (line 9) and we s?art the abovg prc))/cedlljore again fﬁ)m EBr(b.9) = Z er(A.b(2), gln) + smoothing.— (4)
the next leftmost unprocesséediscontinuity. This is re-
peated until al-discontinuities have been processed. This Mutatis mutandisour newey. is the discontinuitylikeli-

line sweeping strategy is also repeated in the other three di hood term that uses the pixel likelihood with masks. Since
rections with the samé& Finally, this process is done for all we expect masks belonging to adjacent pixels to be spa-
values ofs. cially coherent, we can add a visibility smoothing term that

We call the execution of the outer loop (line 1 to 10) a penalizes the change of visibility status between adjacent
cycle Note that each time we updafeon line 9, the energy ~ pixels. However, no visibility smoothing was used in the
Ej, decreases or remains the same. At eaytiebefore  results presented in this paper.
the last, the energy decreases by at least the minimum cost
of changing the label of a pixel, thus ensuring convergence. ?discominuiw label
In practice, convergence is obtained after only a few cycles
After the last, a local minimum with respect tobarder =
moveis found.

To compute the value of tldiscontinuitylikelihood term
for all possible discontinuity locations, we only need tarsc
all the pixels on a line once. Since only 2 pixels have their B
disparity changed when the discontinuity is moved by 1
pixel, the likelihood termey can be efficiently recursively
computed. The same technique can be used for the com-
putation of the smoothing term. Consequently, elaafder
moveis in ©(#L - N?) when Eq. 2 is minimized using dy-
namic programming. In our tests, we used segments of up s
to 19 pixels.

The algorithm may remove disparity discontinuities, but
never adds new ones. Discussion about initialization is-pos

and Eq. 2 into
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Figure 3. DP matching process. To determine the best discontinu-

ity map up to line\ with discontinuity at, for the various discon-
tinuity locations om\ — 1, we look at the best solution up fo— 1,

poned until section 5.1. available by construction. An example oba_ 4 is illustrated.
4. Visibility o o o
_ ~ 4.1, Optimizing discontinuity and visibility
To model occlusion, we must compute the volumetric ) ) _ _
visibility V,(p,d, f) of a 3D reference point formed from The algorithm works by using dynamic programming

the pixelp at disparitys from the point of view of a camera  (DP) applied perpendicularly to the orientation of the $ine

is visible, and 0 otherwise. The visibility information is horizontally either from left to right or right to left. Welils-

collected into a vector, theisibility mask trate this for vertical lines processed from left to righhel
cameras are assumed to be in a cross-shaped configuration,
V(p,d, f) = Vi(p,d, f),...,Ve(p,d, f)) with the reference in the center and the 4 supporting images

at an equal distance from it. The order of the cameras in the
whereC' is the number of cameras outside the reference; amask is left, right, top and bottom.

vector (1,...,1) means that the 3D point is visible in all When dynamic programming attempts to compute the
supporting cameras. We calll the set of all possible visi-  location of the discontinuity of ling, it can rely on knowl-

bility masks; anM-configurationg : P — M associates a  edge of the location of the discontinuities of all preceding
mask to every pixel. The visibility masks aterrectwhen lines (Fig. 3). Because of this, the visibility between any
g satisfies camera to the left of the reference and the 3D point formed

gp)=V(p, f(p),[f) 3) by pixelsp? at any disparity is also known (Fig. 4). Two



similar strategies for binocular and multi-camera stereo
were presented in [1, 6] respectively. These approaches
minimize Eq. 1 directly, whilst we minimize Eq. 2, allowing
the use of much more visibility information. Since the dis-
parity ofpassivepixels is fixed during the minimization pro-
cess, the visibility of the bottom and top cameras is known
for each pixel of the line being examined. Figure 4 illus-

trates the visibility information available when processa
disparity map with our Border-Cut algorithm.

When solving the discontinuity localization problem,

two 2-dimensional tables and¢’ are filled out;¢()\, d) is
the lowest energy of all discontinuity maps of lin@so A
with line X having itsdiscontinuityatd; ¢’ (), d) is the index
of the discontinuityof A — 1 given by this map of lowest
energy, denotedl, ;. A sample discontinuity mafp,_ 4 is

highlighted in Fig. 3 and is also shown in Fig. 4. The table

t’ is used to compute the differely ;’s.
Explicitly, the tableg andt’ are defined inductively as

t(O, d ef/(07d7g|ko)
t0,d) = d
and forA > 0
epr(Nd, gl\)
. sp(A—1,\,d,d)
HAd = minl ()
+ tA—1,d)
t'(\,d) is the index of the minimum

in the above formula

whererg s (A, d) is the smoothing between the pixels of

line A having it discontinuityat d and passivepixels sur-
rounding it. The visibility masks are

g(P}) = (01(i, N\, d,d'),...,04(i, N, d,d"))

whereO.(i, A, d,d’) is a visibility function that is equal to
1iff the camera is visible from pixelp? (see next section).
For mostc’s, it only requires the knowledge &f_1 4/ (')
for N < X and ofpassivepixels. Theb, 4's can be com-
puted with the relations

bra(N) = d

b)\’d(A/) = t/()\/ + 1,b)\7d()\/ + 1)) for 0 <N <\
It is thus possible to computg_; 4 (\’) for all ' < X and
d' € B. This allows us to compute visibilit§..(i, A, d, d’)
for all d’ and for most of the’s and finallyt (), d).

4.2. Computing visibility

We defineO.(i, A, d, d") as the visibility of camera for
pixel p2, for the discontinuitymap defined on lines to A
having itsdiscontinuityon line A atd and having the lowest
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Figure 4. Visibility information available when searching for the
location of thediscontinuitypixel of vertical lineX using DP from

left to right. The visibility of the left camera is available by con-
struction whilst right visibility is unknown since border localiza-
tion for lines to the rigth of\ is not yet computed. Top and bottom
visibilities are always available since they only depend on dispar-
ity of pixels on the line being examined andpdssivepixels.

energy amongst those witliscontinuityd’ on A\ — 1, i.e.
the disparity map, o extended to\ by placing itsdiscon-
tinuity atd. We show how to compute the visibility function
O, for the left camera assuming that all segments are per-
fectly aligned, i.e. there is npassivepixel in the bounding
rectangle of the regioRR.

We first introduce the auxiliary functiof (i, A, d) that
represents how far trehadowof all the pixels to the left of
p? andp? itself goes, for the discontinuity map of lowest
energy defined on lines up fowith a discontinuity on\ at
d. Explicitly,

51(0,0.4) = max { s (e (92 + X) o (60) |
S1(i, A —1,baa(A—1)),

S1(i, A\, d) = max
Fb/\,d’f' (pz)\) + A

}for)\>0

where the negative’s are the lines ofpassivepixels to

the left of the first (zeroth!) active one (of coursg, , s

is only defined on line® to ). When the segments are
not aligned, the disparity gfassivepixels can be needed to
computeS; even for)\ greater than 0. We leave the modifi-
cations to the reader. This recursive computatiof,ofised

a continuous mesh representation of the disparity map. A
consequence of this is that the ordering constraint is egpli

in the selection of visibility masks, but not on the disparit
map itself. Now,O, is simply defined as

1 ifop (i A d) +A> 8 (i,A—1,d)

O1(i,\,d,d') =
16,4, d) {0 otherwise



whered (i, A, d) is the disparity ofp} when the discon- 5 x 5 image grid. Each image has a resolutios®f x 288.
tinuity of X is atd, given f’. O, is equal to 1 when the The search interval was between 0 and 15 pixels and we
left camera is visible. The corresponding relations for the used 16 disparity steps. The 5-camera configuration is a
top and bottom ones are obtained similarly except that they
only use disparity of the pixels of the current line and o
passivepixels. For the right camera, no visibility informa-
tion is available. Because it has been noticed that removi
a camera that is visible is far less damaging than keeping
camera that is not [20], the right camera is only used whg
no others are. In multi-baseline stereo, it is reasonable
expect every pixel of the reference to be visible by at leas
one supporting camera. This use of a heuristic can make t
Border-Cut algorithm oscillate, but after one or two cycled
changes are negligible.
Note that when the cameras are located on only 2 nd
opposite sides of the reference (for example top and lefi
the direction for which DP processes horizontal and ve
tical lines can always be chosen so that the visibility i
handledcorrectly. With these camera configurations, theg
Border-Cut algorithm finds a local minimum, with respec§
to aborder moveto energy function 4 respecting the co
straint 3. The pixel likelihood term takes a user-defined od
clusion cost when no camera is visible. Note that during
border movethe masks opassivepixels may change. This §
should be considered in the termg ;. However in our |
tests, ignoring this did not have an impact on the qualit]
of the solutions. The explanation comes from the fact tha
close objects are generally enlarged by stereo matchers [
Sinceborder movesisually correct thispassivepixels have Figure 5. Reference images for the Head and Lamp ( top left) and
atendency to regain cameras rather than the opposite, a pheground truth (top right) from the Multiview Images database of the

nomenon that has little impact as mentioned above [20].  University of Tsukuba. Disparity map obtained from GEO-BNV
(middle left) and the improvement obtained after applying our al-

5 Experimental results gorithm (middle right). Disparity map of Hybrid-IDP with 36 %
) corruption (bottom left) and result after applying our algorithm

In all our experiments, the matching cost function used (bottom right).
came from [17] which is based on [2]. We used color im-
ages but only the references in gray scale are shown herecross with 4 cameras equidistant to the center one (the refer
As for the smoothing term, we used the experimentally de- ence). The 3-camera configuration is obtained from the pre-
fined smoothing function that also comes from [17]: vious one by removing the top and bottom cameras. Some

/ Ny / B / disparity maps are shown in Fig. 5 and error percentages are
s(p. P (p). f(P) = 7hlp P I(f(P) ~ f(P)) given in Table 6. The entries ASYM-KZ1 and KZ1' come

whereh is defined as directly from [34]. HYBRID-IDP and NAKA-BNV come
, 3 if [Tret (P) — Lret (P')| <5 from [6]. The disparity map for the latter was not available,
h(p,p’) = { 1 otherwise so we could not use it to initialize our algorithm. GEO-

) ) ) ) BNV and REL-DP come from [7] and [11] respectively. All
wherel is 1 at 0 and O elsewherdler (p) is the intensity  these occlusion modeling methods are multi-baseline and
of pixel p in the reference image. The paramefes user-  ysed 5 cameras. Our algorithm lowered the error rate with
defined. A pixel disparity is considered erroneous if it dif- )| injtializations. We also initialized with the currenest
fers by more than one step from the ground truth. This error yyq aigorithms (SEG+VIS [3], SYMBP+OCC [29]) of the
measurement was used in two comparative studies [31, 27]Middlebury Stereo Evaluation - (Version 2) [26]. The fast
TREEDP based on dynamic programming was used as well
[33]. We provide results obtained with a fixed smoothing

This dataset is from the Multiview Image Database from parameter for all the different initializations, with theghd
the University of Tsukuba (see Fig. 5). It is composed of a 5-camera configurations. We also provide those computed

5.1. Tsukuba Head and Lamp



with the best parameter for each disparity map computation.
Of interest is the fact that results are comparable no mat-
ter which initial stereo matcher was used, even when this
matcher only utilized two cameras without occlusion mod-
eling. Only onecyclewas performed with segments of up
to 11 pixels; the running time was below 19 seconds on an
AMD Athlon(tm) 64 Processor 3500+, even though we did
not computee; andsy recursively as described at the end
of section 3.1. Note in Fig. 5 how a few pixels with correct
disparity between the branches of the arm of the lamp were
enough to allow Border-Cut to recover the disparities of thi
region correctly. When using three cameras with the fixed
parameter, we could not reduce the error rate of SEG+VIS
and KZ1'. Nevertheless, we saw a significant improvement

when the best parameter was used. On this dataset, the sen-

sitivity to initialization and to change of the smoothing pa
rameter is reduced when the number of cameras increase
from three to five. The reduced sensitivity of multi-baselin

gigure 7. Variation of the error rate as a function of smoothing and
pixel corruption

stereo to change of the smoothing parameter was also men-

tioned in [34].

Initialization algorithm Before After B-C

with number of B-C 5 cameras [ 3 cameras
cameras used fixed~y | besty | fixed~ [ besty
NAKA-BNV(5 cam’s) 1.70 - - - -
GEO-BNV/(5 cam’s) 2.23 1.17 1.07 1.48 1.44
HYBRID-IDP(5 cam’s) 1.67 1.09 1.09 1.17 1.17
REL-DP(5 cam’s) 1.86 1.13 1.07 1.24 1.11
KZ1'(5 cam’s) 1.28 1.06 1.04 1.77 1.19
ASYM-KZ1(5 cam’s) 1.30 1.11 1.08 1.09 1.08
SEG+VIS(2 cam’s) 1.57 1.11 1.07 1.69 1.08
SYMBP+OCC(2 cam’s) 1.75 0.96 0.96 1.02 1.02
TREEDP(2 cam’s) 2.84 1.04 1.04 1.05 0.96

[ Average [ [ 108 [ 105 [ 131 [ 113 |

Figure 6. Percentage of error in disparity for all pixels of the differ-
ent algorithms for Head and Lamp scene, before and after applying
Border-Cut, using 3 and 5 images.

Figure 7 shows the sensitivity to change of the smoothing
parameter and to the quality of the initial disparity map of
our algorithm, using HYBRID-IDP for initialization. The
probability of a pixel to becorrupted(i.e. having its dis-
parity changed to one picked at random from a uniform dis-
tribution) ranges from 0 to 80%. When used with multi-
baseline camera configurations, our algorithm is very stabl
to change of the smoothing parameter. Withoartruption,
the error stays below 3.7% for ranging from 0 to 100.
Moreover, even when pixels have a 36% chance of being
corrupted the error rate remains below 1.40% (see Fig. 5).
It is thus very resistant toorruption of the initial dispar-
ity map even when a singleycleis performed. Since our

5.2. City scene

This dataset from the Multiview Image Database of
the University of Tsukuba (Fig. 8) contains 81 images of
640 x 480 ina9 x 9 grid. We only used 5 images in a
cross configuration. Each disparity map was computed us-
ing 44 disparity steps and the search interval was between
0 and 43 pixels. Twaycleswere performed with segments
of up to 11 pixels; the running time was below 92 secondes
on an AMD Athlon(tm) 64 Processor 3500+. Some dis-
parity discontinuities present in the reference were manu-
ally segmented to create a partidcontinuityground truth.

A discontinuity location is considered erroneous if it dif-
fers by more than one pixel from the ground truth. This
is motivated by the fact that discontinuities in a scene are
not perfectly aligned with the pixel grid. The different 5-
camera algorithms used to initialize Border-Cut come from
[7] and [6], whilst the 2-camera algorithms BNV and MF
came from [4] and [24] respectively. The results are pre-
sented in Table 9 and some disparity maps are shown in
Fig. 8. The percentage of pixels with a change in disparity
greater than one for GEO-MF before and after Border-Cut
is only 0.71%. Nevertheless, the improvement in border
localization after applying Border-Cut is significant. Kot
that a correct discontinuity location does not imply tha th
disparities on both sides are correct as well.

5.3. Middlebury Binocular Comparative Study

To improve border localization, our Border-Cut algo-

approach does not add new discontinuities but may removerithm is more appropriate for multi-baseline stereo config-
existing ones and since it is robust ¢orruption we can urations, since in binocular stereo, occlusion affectddhe

start with an under-smoothed initial disparity map in order calization of depth discontinuities on only on side of ob-
to avoid missing small objects. In our tests, this was not jects. Nevertheless, we provide results for the sterec pair
necessary. of the new Middlebury comparative study. We use as ini-



Algorithm [ Before B-C (besty) [ After B-C (fixed ) |

FULL-MF (5 cam’s) 22.3 11.7
FULL-BNV (5 cam’s) 19.8 11.1
GEO-MF (5 cam’s) 23.2 10.4
GEO-BNV (5 cam’s) 154 11.4
Hybrid-IDP (5 cam’s) 28.2 14.7
BNV (2 cam’s) 214 9.8
MF (2 cam’s) 30.5 9.8

Figure 9. Percentage of error in the discontinuity location of the
different algorithms for City scene, before and after Border-Cut,
using 5 images.

multi-baseline stereo. From an initial disparity map, the a
gorithm associates a position to every disparity discantin
ity, instead of a disparity label to every pixel. This forraul
tion allows to find an approximated solution to a 2D labeling
problem with a robust smoothing term by minimizing mul-
Figure 8. Reference image for the City scene (top left) from the tiple 1D problems. We showed how to include efficiently
Multiview Images database of the University of Tsukuba. Some vyisibility computation into each 1D minimization using dy-
_manually segmented disparity discontinuities (top r_ight). Dispar- namic programming. Our method obtains sharp and well-
ity map obtained from GEO-MF (bottom left) and improved by a1 disparity discontinuities starting from the outpfs
Border-Cut (bottom right). Regions of interest are framed (see o\ iqe range of stereo matchers. For binocular algorithms
high resolution images in the electronic version of this paper for - .
small details). and those that do not model eeclusmn, the |mprovement af-
ter applyingBorder-Cultis significant to the point where the
final results are indistinguishable from those obtained af-
tialization the results obtained from BNV-OCC, KZ1, BNV ter initializing with multi-baseline methods with occlosi
and TREEDP coming from [16],[17], [27]-c and [33] re- modeling. Moreover, our framework, when used with cer-
spectively. The first two methods model occlusion, whilst tain camera configurations, guaranteescirgectvisibility.
the others do not. They all use the same smoothing modelThe validity of our framework was demonstrated on stan-
and similar cost function as that of our Border-Cut algo- dard datasets with ground truth and was compared to other
rithm. Results are shown in Fig. 11. Border-Cut, when state-of-the-art multi-baseline stereo matchers. Faréut
used on binocular stereo, is more sensitive to change of thavork, better ways of defining and extracting borders should
smoothing parameter and occlusion cost (the latter is notbe found. Applications of the Border-Cut algorithm to other
even used in multi-baseline Border-Cut). The algorithm is vision problems should also be investigated.
also more sensitive to the initialization. Neverthelebg, t
average error reduction for BNV-OCC and KZ1 are repec-
tively 0.48 and 0.21. For BNV and TREEDP, the error
reduction is 1.61 and 1.88 respectively. As expected, the [1] P.N. Belhumeur. A Bayesian approach to binocular stereop-
error reduction is more significant for algorithms that do sis. Int. J. Computer Vision19(3):237-260, 1996.
not model occlusion. For TREEDP the error in disparity in  [2] S- Birchfield and C. Tomasi. A pixel dissimilarity measure
discontinuity regions (as defined by the Middlebury Stereo that is insensitive to image samplingEEE Trans. Pattern

. . Anal. Mach. Intell, 20(4):401-406, 1998.
Evaluation - Version 2 ) for the Venus scene was reduced [3] M. Bleyer and M. Ge(la)utz. A layered stereo algorithm us-

from 7.74% to 2.22% (see Fig. 10). The improvement in ing image segmentation and global visibility constraints. In
discontinuity regions is even greater for algorithms known Proc. of Int. Conf. on Image Processir2p04.
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