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Abstract

We propose a new paradigm, motion without struc-
ture, for determining the ego-motion between two
frames. It is best suited for cases where reliable fea-
ture point correspondence is difficult, or for cases where
the expected camera motion is large. The problem is
posed as a five-dimensional search over the space of
possible motions during which the structural informa-
tion present in the two views is neither implicitly or
explicitly used or estimated.

To accomplish this search, a cost function is devised
that measures the relative likelihood of each hypothesized
motion. This cost function is invariant to the structure
present in the scene. An analysis of the global scene
statistics present in an image, together with the geome-
try of epipolar misalignment, suggests a measure based
on the sum of squared differences between pizels in the
first image and their corresponding epipolar line seg-
ments in the second image.

The measure relies on a simple statistical character-
istic of neighboring image intensity levels. Specifically,
that the variance of intensity differences between two
arbitrary points in an image is a monotonically increas-
ing symmetrical function of the distance between the two
points. This assumption is almost always true, though
the size of the neighborhood over which the monotonic
dependency holds varies from image to image. This
range determines the mazximum permissible motion be-
tween two frames, which can be quite large.

FExperiments with both outdoor scenes and an indoor
calibrated sequence achieve very good accuracy (less
then 1 pizel image displacement error) and robustness
to noise.

*Visiting from Université de Montréal, Département
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Succ. Centre-Ville, Montréal, Québec, H3C 3J7

1. Introduction

Much work has been done on trying to recover cam-
era motion (i.e. ego-motion) parameters from image
pairs. In almost all cases, either optical flow or fea-
ture point correspondences are used as the initial mea-
surements. In the first case, some inherent problems
(aperture, large motions, etc.) related to optical flow
computation, suggest that errors can never be lowered
to a negligible level (see [2,8,10,15]). Even methods
using the intensity derivatives directly or normal flow
(see [1,6,7,12,14,15,17]), suffer from high noise sensi-
tivity. For feature-based methods, the reliable selection
and tracking of meaningful feature points is generally
very difficult, see [3,11,16,17].

All prior methods of ego-motion implicitly or explic-
itly determine the structure present in the scene. For
example, while feature based methods compute a mo-
tion estimate directly, the structure is implicitly avail-
able given the feature correspondences. Direct methods
explicitly estimate both the ego-motion and structure,
typically in an iterative fashion, refining first the mo-
tion, and then the structure estimates. Thus, good mo-
tion estimation appears to require good structure esti-
mation (or at least point correspondence estimation).
In contrast, we propose a paradigm that we call motion
without structure. Under this paradigm, the recovery
of ego-motion is independent of any structure or cor-
respondence estimation. The benefit is that there are
only five unknown motion parameters to be estimated.
As such, we expect that the approach should be both
robust and accurate. The experimental results support
this.

The algorithm relies on statistically modeling the
image behavior in the neighborhood of a point, as
discussed in Section 2.1. This model is then used
to estimate the likelihood of an assumed camera mo-
tion. In [4], we proposed using the difference between
histograms computed along assumed correspondence
epipolar lines as a likelihood function. This statisti-
cal measure is very effective in determining the rota-
tional component of ego-motion, but is not always a



reliable measure of the likelihood of a translational mo-
tion. Consequently, we proposed in [5] a likelihood mea-
sure based on the sum of sums of squared differences
between pixels in one image and their hypothesized cor-
responding line segments in the other image that is a
reliable estimate of either the rotational or translational
components of motion. This measure is detailed in Sec-
tion 2.2.

Determining the true motion is then accomplished
by searching for the maximum likelihood estimate over
the space of translations and rotations. The search is
straightforward since we show in Section 2.3 that the
function to be minimized has only one minimum (which
is the solution), provided the image is well behaved,
i.e. the variance between neighboring intensity points
increases monotonically and symetrically with the dis-
tance between the points. In previous work [5], the
sub-problems of finding rotation or translation when
the other component of motion is known was shown to
be solvable by locating the single global minimum. This
paper extends these results and considers the full mo-
tion case when both rotation and translation must be
simultaneously estimated. The effect of motion ambi-
guity (see in [13]) on the accuracy of motion estimation
is also discussed.

Section 3 presents experimental results from a com-
prehensive evaluation based on real images of stereo-
scopic pairs and an indoor calibrated motion sequence.

2. Motion Estimation as a 5-D search

Our goal is to determine the motion between two
frames by a search over the space of possible rotations
and translations. The number of parameters to be es-
timated are three for rotation and two for translation.
Only two translational components are needed because
the magnitude of the translation cannot be estimated,
only its direction (due to the depth-scale ambiguity).
The translation is thus assumed to have unit magni-
tude, and the estimation of translation reduces to de-
termination of the direction of translation on the surface
of a unit sphere.!

In order for such a search to be possible, a cost func-
tion is needed that evaluates the likelihood of an as-
sumed motion. Essential characteristics of such a cost
function are (1) invariance to structure in the scene, (2)
a well-defined global minimum at the correct motion es-
timate, and (3) no local minima in the neighborhood of
the correct motion.

In Section 2.2, we describe one such structure-
invariant cost function, based on a simple statistical
model of local intensity variation (see Section 2.1), that
possesses these desired properties.

LConsequently, in the experimental section, the translational
error is recorded in degrees over the unit sphere.
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Figure 1. JISCT image database. The four im-
ages A) Parking meter, B) Birch, C) Shrub, D)
Tree are shown on top of their variance functions
o2(5). Distances along the axis are in pixels.
Darker points have smaller variance.

2.1. A statistical model of image intensities

A simple statistical model is used to represent image
behavior around a point. Consider the intensity dis-
tribution in the neighborhood of a given image point
p. We are interested in the probability of differences in
intensity between point p'+ § and P, conditioned on the
displacement § between the two points.

This property is intuitively related to the correlation
present in a scene. For a given image, we can evaluate
the parameters of the distributions, namely 02(5), for
all possible displacements 5.

Example of these variance functions are shown in
Figure 1 for a neighborhood of 50 pixels. The mean
of the distributions is not shown here since it is always
very close to 0. The variance functions increase ap-
proximately monotonically with distance, with a single
minimum centered at & = (0,0). This property is ex-
ploited to derive the likelihood measure in Section 2.2.
Note that while the relationship between variance and
distance is monotonically increasing, it is not always
symmetrical, indicating that intensities are more corre-
lated in certain directions. It is straightforward to find
a mapping between two monotonically increasing func-
tions to restore symmetry. This mapping will be applied
to correct pixel value differences in the cost function.

Our experimental observations indicate that most
natural images are well-behaved. We define a well-
behaved image as one that possesses a monotonically
increasing variance function. Only images that con-
tain repetitive textures or those that are highly non-
stationary, generally present badly-behaved (i.e. non-
monotonic) variance functions. By examining how well-
behaved the variance function is, it should be possible
to measure how accurate the method is expected to per-
form.
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Figure 2. Basic geometry for known rotation.
For a given 74(p), its unknown corresponding
point I5(p.) is on the line joining I (Ps) and
the FOE.

2.2. A Depth-invariant cost function

We wish to evaluate the likelihood of a motion, com-
posed of a rotational and a translational component, to
be the true motion of the camera. As shown in Figure 2,
for a given point 14 () in image A and a camera motion,
we can compute the matching point I (f) (the zero-
disparity point) in image B that corresponds to infinite
depth, as well as the focus of expansion (FOE). The
point Ig(P) is related to the rotational component of
the motion while the FOE is related to the translational
component.

Since we do not know the real depth z of point
I4(p), we can only assume that the actual correspond-
ing point Ig(f,) is somewhere in the neighborhood of
point Ig(Ps). In fact, it is always located on the line
joining the true I g (P ) and the true focus of expansion.

For a given camera motion, a line segment, u, of
length 7,4, is selected starting at the zero-disparity
point Ip(Ps) and oriented toward the FOE. The value
of 74 is chosen to reflect the maximum disparity ex-
pected. After selecting a number of sample intensity
values u; along the segment u, we define the error mea-
sure e, as

n n

ew = (u;i—Ip()* =Y (ui = 1a(p))’ (1)

i=1 i=1

which will be a minimum when the segment u contains
Ig(p.). Equation 1 can assume that Ig(7,) = Ia(p)
since these points correspond and therefore should have
the same intensity value. To get a global estimate of
the likelihood of a motion, we select a number of points
I4(p;) and compute the sum
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of the individual line segment errors e, corresponding
to each of these points.

The next section will show how this cost function
satisfies the requirement enumerated in Section 2. It is

expected that for well-behaved images, this cost func-
tion will exhibit a single minimum at the true camera
motion and that a simple search based on gradient de-
scent will be sufficient to find it.

2.3. Convergence and smoothness proper-
ties

In order to successfully search over the motion space,
the cost function must have a well-defined global mini-
mum and few, if any, local minima. Section 2.3.1 shows
that for a known rotation, the translational search space
features only a single global minimum, assuming mono-
tonic and symmetrical image intensity variances. The
converse is also demonstrated, that is searching for ro-
tation with known translation.

The preceding discussion assumed that either the
translation or rotation was already known. In practice,
both must be estimated. We do not have a proof of
convergence for this situation and have proceeded with
an experimental investigation to determine the utility
of the cost function under these circumstances.

A second condition for successful search, is that the
region of convergence should be large, to allow easy
selection of an initial search point. This region (and the
general smoothness of the function) should be derivable
from the local image intensity statistics. Qualitatively,
it is clear that large and frequent intensity variations
do not allow a wide region of convergence (because of
ambiguities) while low frequency variations allow for
much larger motions.

2.3.1. Existence of a single minimum

In this section we show that for well-behaved images, a
single minimum of the error measure e, of Equation 1
is observed when a segment u contains Ig(p>) and joins
the true zero-disparity point and the true FOE. Since
by definition a well-behaved variance function always
features a global minimum at (0,0), this condition is
enough to ensure that the likelihood function possesses
a unique minimum. This is demonstrated next.

Consider a segment u in the neighborhood of 7,
starting at P, and containing n sample intensities as
depicted in Figure 3A. Then we can assume that each
sample behaves like a random variable u; with distri-
bution

flui) =

where (7[,,,2 is an arbitrary probability distribution

Gl1a():02(d, ) (1)

and cfui is the distance (z,y) from sample u; to position
Pz, the unknown location of the corresponding point
to I4(p). From Equation 1, the error measure e, is a
random variable defined as

ew= (i La()*

i=1
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Figure 3. Error function for two segments u and
v. When v is closer to . then u, its expectation
is smaller for a well behaved variance function.
A) Unknown translation. B) Unknown rotation.

with an expectation value defined as

n n

E(eu) = EO)_(u; — 14(p))” Zo— (dy,)

i=1

Suppose we now take a second segment v starting

also at P, but closer to the point p.. A set of samples

v; is chosen with the same sampling! as segment u. The
error measure e, is defined as the random variable

ev_z

which has an expected value

,IAﬁ‘)

n

Blen) =Y 0*(d,,)

i=1

where d_; is the distance (z,y) from sample v; to posi-
tion p.. We now wish to show that the expectation of
e, is always smaller then E(e,,). First, it is straightfor-
ward to see that

AR

since v is a rotated version of u toward p,, except for the
special pathological case where p, = p.. Second, the
variance function 02(5) is assumed to be monotonically
and symetrically increasing with ||d]| from 7.. From
these two observations, we can immediately conclude
that . .
o?(dy,) < 0*(dy;) , Vi
It then follows that
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IThe case of different sampling and different lengths of u and
v can also be handled in a more elaborate proof.

which shows that as we get closer to the segment con-
taining Ig(p.), the expected error value gets smaller
until it reaches a minimum when the candidate FOE
correspond to the true FOE. As long as the variance
function is monotonic and symmetrical, this minimum
is guaranteed to exist and is unique. Since this is true
for any epipolar line segment, it is also true for the sum
of these segments in global cost function. The same
procedure is applied for rotation estimation, just by ex-
changing the role of the FOE and the zero-disparity
point (see Figure 3B).

3. Experiments and Results

Results of the motion without structure method are
shown here for different kinds of real images pairs and
for a calibrated motion sequence. The image pairs
are taken from the SRI JISCT stereo database which
provide partial ground truth since the motion between
frames is a horizontal translation. However, we do not
exploit this knowledge during the estimation procedure,
and only use it to qualitatively compare the estimated
and expected motions.

Most of the motions estimated here have a small for-
ward (or backward) component. Our experiments show
that large forward translation is much easier to esti-
mate then lateral (i.e. sideway) motion. This is caused
by the infamous rotation-translation ambiguity stating
that a lateral translation (i.e. little or no forward com-
ponent) combined with a small camera field of view is
hardy distinguishable from a rotation. Inversely, for-
ward translation is not much affected by this ambiguity
and therefore is easier to estimate.

3.1. Searching the solution space

A direct search of the motion space is performed by
approximating the gradient and following steepest de-
scent. The algorithm usually needs around 60 to 100
iterations to converge to the solution. Much improve-
ment, could be made to this search method, since no
emphasis has yet been put on speed.

In all experiments conducted, we took care to select
realistic initial estimates, i.e. as far as possible from
the solution while taking into account the convergence
constraint derived from the image texture. It is impor-
tant to note that in most practical situations of mo-
tion tracking, the motion parameters from the previous
frame can be used as an initial estimate for the next
frame, taking advantage of the fact that motion tends
to be similar and thus allowing faster convergence.

For all the experiments presented, only about 4% of
the points of the images are arbitrarily selected for like-
lihood estimation. The typical running time is between
30 seconds and 10 minutes on a 150 MHz Silicon Graph-
ics workstation. The execution time can be reduced by



Figure 4. The Pentagon image pair. The solu-
tion is superimposed over the images as a grid of
selected points with their corresponding epipo-

lar segments. The epipolar line segments are
approximately horizontal, indicating good align-
ment.

selecting a smaller number of points, at the expense of
less accuracy in the motion estimate.

3.2. JISCT image pairs

The Pentagon image pair has a very well-behaved
local intensity statistic. The image pair is very well
aligned so that the motion between frames is purely
due to horizontal translation. However, the magnitude
of the translation is small, on average less then 2 pixels,
which would usually make accurate estimation of the
translation difficult.

The results are illustrated in Figure 4. The initial
translation was 35° from the correct translation on the
unit sphere, while the initial rotation was set to 10°
around an arbitrary axis. The rotation obtained is
0.17°, corresponding to a maximum of 0.4 pixels error
anywhere in the image. The true rotation is 0°. The
translation obtained is (—0.994, —0.102,0.035), which
correspond to a 6° error. While at first sight this ap-
pears large, we note that this is well within the ac-
curacy of other two-frame algorithms [9, 15] and that,
within the image, this error correspond to a maximum
displacement of 0.3 pixel. The expected translation is
(=1,0,0).

The results for the Tree image pair , which also ex-
hibits a pure horizontal translation, are illustrated in
Figure 5.

The initial motion estimate is a translation oriented
35° from the horizontal on the unit sphere and the ini-
tial rotation estimate is 5°, corresponding to an image
displacement of up to 12 pixels. The estimated transla-
tion is (0.996, —0.0765,0.0485), which is 5.4° from the
true horizontal motion of (—1,0,0). The estimated ro-
tation is 0.4° which is believed to accurately reflect a
slight vergence effect of the camera that can be manu-
ally observed.

Figure 5. The Tree. The estimated motion is
superimposed over the images as a grid of points
and their corresponding epipolar segments. The
motion is approximately horizontal.

Figure 6. The Shrub.

The recovered motion
(approximately horizontal translation), superim-
posed on the right image.

The third example, the Shrub, also features only a
horizontal translation. However, this type of imagery
is usually difficult to analyze because of the ambiguous
textures presented by the brick wall and the bushes.
The results are illustrated in Figure 6. The initial mo-
tion estimate has a translation at 35° from the horizon-
tal and a rotation of 5°. The estimated translation is
(—0.9992,0.0369, 0.00836) which correspond to a 2.2°
error, for an expected translation of (—1,0,0). The es-
timated rotation is 0.1° which correspond to an image
displacement of maximum 0.2 pixels.

3.3. The PUMA sequence

The motion without structure algorithm was tested
on a Puma calibrated motion sequence, courtesy of the
University of Massachusetts and shown in Figure 7. The
rotation between each frame is approximately 4° around
an axis parallel to the optical axis of the camera and
located at (0.909,0.416,—0.005) feet from the optical
center of the camera.

We performed the motion analysis using only two
successive frames at a time. The initial estimates for



Figure 7. The Puma image sequence, frames

1,4,7,10,13. The camera is at the end of a
Puma robot arm rotating around its elbow in
increments of 4°.
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Figure 8. Puma sequence. On the left, the mag-
nitude of rotation is shown along with the aver-
age angle (dashed line) and true calibration an-
gle (solid line). On the right, the axis of rotation
on a flattened unit sphere, shown with (0°,0°) as
the true axis of rotation.

the motion are always at least 5° off around an arbi-
trary axis for rotation, and at least 35° off for direction
of translation. The rotation angle and axis estimates
are shown in Figure 8. The rotation axis is estimated
with an average of 13° error, while the rotation angle is
estimated with an accuracy of 0.2°, which corresponds
to a maximum image displacement of around 0.5 pixels.
The results for translation are illustrated in Figure 9.
When compared with calibration data, it appears that
the estimated translations (thick line) are accurate and
well within the calibration accuracy.

Since the calibration information is only available for
the first 15 frames, the missing information was extrap-
olated whenever possible without affecting the reliabil-
ity of the calibration. The fact that this motion analysis
method does not require any a priori information like
feature point correspondence while providing excellent
accuracy confirms the usefulness and convenience of the
“motion without structure” approach.

3.4. Noise sensitivity

The evaluation function for any hypothesized mo-
tion does not rely on image gradients, and consists of
accumulating large amount of intensity difference infor-
mation. We therefore expect this measure to be very
robust to noise.

Figure 9. Puma sequence. Estimated (thick line)
and calibrated (thin line) translations shown on
the flattened unit sphere.

0=5.7

0=31.8

0=57.7

Figure 10. Image degraded by uniform noise. s
is the standard deviation of the noise.

As a simple test for noise sensitivity, we degraded the
first two images of the Puma sequence using uniform
noise in the range £10 up to £100, which corresponds
to standard deviations ranging from 5.7 to 57.7 (see
Figure 10). We computed the motion between the two
frames 17 times at selected noise levels and observed the
distribution of rotation angles recovered. In Figure 11,
these angles are shown along with ellipses whose heights
are the standard deviations of rotation angles at partic-
ular noise levels. These standard deviations range from
0.01 to 0.1 degree. The relationship between the im-
age noise level and the observed rotation angle error is
approximately linear, implying that image noise has to
double to result in doubling the error on the estimated
rotation angle.

These results clearly indicate that the algorithm is

very resistant to noise?.

2This is for uncorrelated noise. For correlated noise (e.g. a
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Figure 11. Rotation angles obtained for different
pixel noise levels. The height of a an ellipse gives
the standard deviation of angles for a particular
noise level.

4. Conclusion

We presented a new paradigm to find the full motion
between two frames. We refer to the approach as “mo-
tion without structure” because it does not require or
compute any information related to the structure of the
scene. The motion analysis problem is posed as a search
in the space of possible motions and a likelihood mea-
sure is developed that evaluates a hypothesized motion
based on the sum of sum of squared differences between
points in one image and their corresponding epipolar
segments in the other.

This likelihood function was shown to exhibit exactly
one global minimum for the cases of either known ro-
tation or known translation, provided the images are
well-behaved, i.e. that the variance of intensity differ-
ence between two points is a monotonically increasing
function of their distance apart. In the full motion case,
a unique global minimum also exist, but may be sub-
ject to the well known ambiguity between rotational
and translational motion.

Experimental results suggest that the method is ap-
plicable to a wide range of images while achieving
very good accuracy and presenting strong robustness
to noise. Large frame-to-frame motions can be handled
and are only limited by the characteristics of the local
intensity variation present in the image.

We believe that the paradigm of motion without
structure can provide a robust and accurate algorithm
to estimate the ego-motion between two frames. More-
over, we hope that it will prove superior to feature-
based and direct or indirect methods of motion-and-
structure estimation since neither optical flow, intensity
derivatives or feature correspondence are needed.

single camera with a dirty lens), the effect on accuracy is likely
to be larger.
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