MRF Solutions for Probabilistic Optical Flow Formulations

Sébastien Roy Université de Montréal Venu Govindu NEC Research Institute

Problem: Optical Flow Estimation

- Dense flow field
- Small motions (one pixel or less)
- Non-parametric motion model (arbitrary motions)
- Contant Brightness Assumption (CBA)

Contribution: New Optical Flow Algorithm

- Probabilistic interpretation of the CBA
- Novel parametrisation of optical flow
- Efficient and Global solution via graph-theoretic formulation

Model

Spatio-temporal derivatives are noisy.

A probabilistic interpretation is needed!

Spatio-temporal derivatives : I_d ($I_d = [I_x, I_y, I_t]$)

True spatio-temporal derivatives : I_d^0

Noise Model : $I_d = I_d^0 + n \quad n \sim N(0, \Sigma)$

Motion : $v = [v_x, v_y, 1]$

Motion, given the image derivatives : $P(v|I_d)$

Conditional prior on the motion Noise model : $N(I_d, \Sigma)$

Selecting a conditional motion prior

"All flow orientations consistent with normal flow are equally likely"

$$P(\theta|I_d^0) = \frac{1}{\pi}, |\theta - \theta_n| \le \frac{\pi}{2}$$

0 otherwise

Since

$$v = [\cos(\theta), \sin(\theta)] ||v_n|| \sec(\theta - \theta_n)$$

this directly defines $P(v|I_d^0)$

In practice, the distributions are obtained by sampling the derivatives.

Typical motion distributions from our model

Are Orientation and Magnitude independent?

Experimentally supported by the correlation coefficient.

$$P(v|I_d) = P(\theta|I_d)P(m|I_d)$$
 $\rho_{\theta m} = 0.04$ $P(v|I_d) = P(x|I_d)P(y|I_d)$ $\rho_{xy} = 0.4$ Almost independent!

Resolving the optical flow : An MRF Formulation

- Motion is under-constrained by the CBA
- Added constraint : Neighbor pixels have similar motions
- Ideal for a Markov Random Field formulation
- The single parameter + linear penalty MRF can be solved globally and efficiently via a maximum-flow computation in a graph

1. Solve for orientation only

$$\min_{\Theta} \sum_{i \in \mathcal{S}} \sum_{i' \in \mathcal{N}_i} \beta |\theta_i - \theta_{i'}| - \sum_{i \in \mathcal{S}} \ln(P(\theta | I_{di}))$$

Orientation is discretized in steps of 1 to 4 degrees

2. Solve for magnitude, given the orientation

Use $P(m|\theta_s;I_d)$ rather than $P(m|I_d)$

$$\min_{\Theta} \sum_{i \in \mathcal{S}} \sum_{i' \in \mathcal{N}_i} \beta |m_i - m_{i'}| - \sum_{i \in \mathcal{S}} \ln(P(m|\theta_{si}; I_{di}))$$

Magnitude is discretized from 0 to a maximum value (~2 pixels) by steps of 0.1 pixel

Results: Synthetic Images

Comparison with dense results from [Barron et al., 1994]

Results: Recovering Flow Discontinuities

- Create a discontinuous flow pattern ([Barron et al.,1994] has only smooth fields)
- Solve with two different algorithms up to a common level of orientation error: 25°
- Our algorithm does not smooth over discontinuities
- Our algorithm enforce smoothness by introducing a bias

