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Abstract

In this paper we propose an efficient, non-iterative
method for estimating optical flow. We develop a proba-
bilistic framework that is appropriate for describing the in-
herent uncertainty in the brightness constraint due to errors
in image derivative computation. We separate the flow into
two one-dimensional representations and pose the problem
of flow estimation as one of solving for the most probable
configuration of one-dimensional labels in an Markov Ran-
dom Fields (MRF) with linear clique potentials. The global
optimum for this problem can be efficiently solved for us-
ing the maxflow computation in a graph. We develop this
formulation and describe how the use of the probabilistic
framework, the parametrisation and the MRF formulation
together enables us to capture the desirable properties for
flow estimation, especially preserving motion discontinu-
ities. We demonstrate the performance of our algorithm and
compare our results with that of other algorithms described
in the performance evaluation paper of Barron et. al [2].

1 Introduction

Motion estimation is an important problem since it
arises in different computer vision tasks. When the motion
between images is small, it is described by the optical flow
defined as the two-dimensional motion field between two
different views. Under constant brightness assumptions
(CBA), we can constrain the pixel motion along a single
dimension. Since the flow at a pixel has two components,
optical flow estimation is an inherently ill-posed problem.
Most methods overcome this limitation by “regularising”
the flow field, ie. by enforcing some form of smoothness
on the flow field [4, 8]. The CBA can also be cast as an
energy minimisation, where the flow field is estimated
by minimising the least squares difference between two
images [1, 11]. Lucas [7] compute the flow by “intersect-
ing” local brightness constraints over a small patch. The
smoothness problem can also be addressed by fitting a
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parametric global motion model (eg. [12]). In contrast,
in this paper we are interested in solving for the dense,
non-parameteric flow while preserving discontinuities in
the flow field.

Most estimation methods achieve a balance between
the brightness constraint and smoothness by minimising a
cost function. Since they depend on iterative, non-linear
techniques, these methods are not guaranteed to converge
to the global minimum and thus give unsatisfactory results
when they converge to a local minimum. We overcome this
limitation by formulating the problem of flow estimation
as a labelling problem in a Markov Random Field (MRF)
framework.  For certain classes of MRF’s, the exact
Maximum A Posteriori (MAP) estimate can be obtained
efficiently by a maximum flow computation on a graph.
Being guaranteed to be optimal, this computation avoids
the problem of local minima. As will be clarified later,
this is a huge advantage especially in preserving motion
discontinuities. Some recent methods that use the MRF
formulation and a graph-theoretic solution are [9, 5, 3].

Another significant problem in flow estimation is the
computation of image derivatives. Since the image is dis-
cretized in the spatial, temporal and intensity dimensions,
the accuracy of the discrete computation of spatio-temporal
derivatives is limited. This problem is partially addressed
by sophisticated derivative filters. In practice the deriva-
tives are also corrupted due to deviations from the constant
brightness assumption such as change of illumination,
brightness scaling and specularities. Hence the brightness
constraint should not be considered to be a "true” rigid
constraint. To capture this notion of uncertainty, we cast
the brightness constraint in a probabilistic framework. A
related example of a probabilistic interpretation of optical
flow is that of Simoncelli et al [10] which we will discuss
later.

In Section 2, we formulate the problem of optical flow
estimation. In Section 3 we develop the probabilistic inter-
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Figure 1. The Brightness Constraint and cor-
responding conditional distribution of flow
orientations. All orientations in the half-
circle centered on the normal flow vector are
equally likely.

pretation of the brightness constraint. The MRF formula-
tion and its solution are described in Section 4. In Section 5
we discuss the results obtained using our method and com-
pare them with the results in Barron et al [2]. We also show
an experiment which illustrates the performance of our al-
gorithm in the presence of flow discontinuities.

2 Problem Formulation

The brightness constraint is derived assuming the con-
stancy of image brightness of a pixel. Therefore, we have

I(z,y,t) = I(x + v3,y + vy, t + 1)
0 0 0
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where I, I, and I; are the spatio-temporal image
derivatives and v, v, are the components of flow along the
z and y directions. This constraint describes the equation of
a line (See Fig. 1). As previously mentioned, the brightness
constraint has to be relaxed due to the inherent uncertainty
in image derivatives. As will be shown later, using simple
and intuitive priors in a Bayesian framework can vyield
useful models of the CBA.

For convenience, we shall use the following notation
throughout the rest of the paper. The spatial derivatives
[I,1,] are denoted as VI and the spatio-temporal deriva-
tives [I, I, I;] are denoted as I;. The flow at a given pixel
is denoted as v, ie. v = [vg, vy, 1].

The true spatio-temporal derivatives, denoted I,;°, con-
strains the flow vector v to lie on the line described by

I,° - v = 0, as shown in Fig. 1. In a probabilistic manner,
we define P(v|I,) as the probability of flow conditioned on
the noisy image derivatives ;. We define the error model
for image derivatives as

I;=1,4+n n~N(,X) (2)

where n is the error in our observation and is assumed
to be Gaussian distributed with zero mean and some covari-
ance X . To derive P(v|I4), we use Bayes rule to obtain

P(v|Iy) = / P(|I,°)P(I,°|1,)dI,° (3)

Since we have an additive noise model, the conditional
probability P(Id°|Id) is a Gaussian distribution with mean
I and covariance ¥ . Hence given a prior distribution of
flow conditioned on the true image derivatives P(v|1;°) we
can describe the desired conditional probability P(v|Iy).
We would like to point out that Simoncelli et al [10] use
a similar probabilistic formulation. In fact, they describe
the same conditional probability as Eqn. 3. However, their
formulation differs from ours in two ways. Firstly, their
noise model places the source of errors on the flow vectors
instead of the image derivatives which are known to be
erroneous in the first place ! Secondly, their formulation
requires them to choose a prior distribution on the flow
vectors P(v). This prior is very hard to describe and
changes with the type of motion, distribution of depths in
the scene etc. Moreover, analytical tractability imposes a
choice of zero-mean, Gaussian distribution for P(v) which
is seldom realised in practice.

In our formulation we only need to choose the con-
ditional distribution P(v|1;°), the flow probability given
the true image derivatives of a pixel. This prior is easier
to motivate and does not require knowledge of the global
motion patterns P(v). The selection of this prior and
its impact on the solutions is discussed in the following
section.

3 Probability models for the Brightness Con-
straint

As can be observed from Fig. 1 , the unknown compo-
nent of the flow vector v lies on the CBA line and can be
parametrised by an angle 6. This separates the space of
possible values of 8 into an acceptable (shaded) and an un-
acceptable zone. The acceptable zone is the half-circle cen-
tered on the normal flow vector v,, associated with I,°. The
requisite prior P(v|I;°) can now be described as the condi-
tional prior of 6. In its weakest form the prior on 8 simply
assumes that flow orientations in the acceptable zone are



equally likely (See P(6|1,°) in Fig. 1). The prior “kernel”
is
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0 otherwise
where 6,, is the orientation of the normal flow vector v,,.
If desired any specific knowledge of flow can be used to
change the conditional distribution of flow orientations. As
an example, for strictly bounded flow magnitude the range
of acceptable angular deviations from 6,, can be reduced.
Since the true flow is fully determined by 6 the choice of
the conditional prior P(8]1,°) automatically fixes the con-
ditional prior P(v|I,°). It can be shown that

v = [cos(8), sin(8)]||vn]| sec(6 — 6,,) (5)

where v, has a magnitude equal to ””é‘}‘” .

By combining Eqgn. 3, Eqn. 4 and Eqgn. 5 we can express
P(v|I) as a function of P(I,°|I,). However this function
does not have a simple analytic form. In practice it will be
evaluated numerically.

Each pixel yields an image derivatives I;. Subsequently,
we generate a series of realisations drawn from the distri-
bution P(Id°|Id). For each realisation, the prior kernel is
accumulated on the desired distribution, P(v|I) 1. Intu-
itively the conditional distribution of true flow P(v|l4) is
the weighted average of different orientation kernels where
the weights are determined by the conditional distribution
P(1,°|14).

To illustrate the probability distributions described
above, Fig. 2 shows the normal flow and conditional
flow distributions P(v|I4) for three image derivatives,
[20, 20, 10], [10,10, 5] and [4,4,2]. These derivatives cor-
respond to the same normal flow vector of [—0.35, —0.35]
observed in areas featuring different amounts of image tex-
ture. The error in image derivatives is assumed to be uni-
form, Gaussian distribution with a standard deviation of 1
in each of the spatio-temporal dimensions. For high lev-
els of texture (I; = [20, 20, 10]), the brightness constraint
and the normal flow vector are reliable. Hence the resulting
normal flow distribution is very compact and the full flow
distribution is uncertain only along the brightness constraint
line. In the case of medium texture (I; = [10, 10, 5]), the
uncertainty in both the position of the normal flow vector
and the full flow increases. When the amount of image tex-
ture is low (I3 = [4, 4, 2]), the degree of uncertainty in both
the normal and full flow values increases significantly. This

1For our experiments, we have used the kernel shown described by
Eqn. 4 as the conditional distribution, P(8]14°)
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Figure 2. Probability distributions of normal
and true flow for different amounts of texture.

corresponds to the intuition that the reliability of the normal
flow and the brightness constraint depends on the amount
of image texture present in a local patch. In low texture ar-
eas this model does not penalise large deviations from the
brightness constraint line. In Fig. 3, we show the distribu-
tions obtained for the flow orientation and magnitude using
the same values of I; as in Fig. 2. As can be observed,
the distribution of flow orientations is essentially invariant
to the amount of texture available. However, the amount of
texture significantly affects the probabilites of flow magni-
tudes. In the case of high texture, the normal flow is reli-
able, hence the full flow magnitude has to be greater than
the normal flow magnitude (indicated by the vertical line).
As the amount of texture decreases, the normal flow mag-
nitude is less reliable and we have an increase in the proba-
bility of flow magnitudes that are less than the normal flow
magnitude. This confirms the intuition that unreliable nor-
mal flows should not overly restrict the range of full flow
values. An extreme case would be when there is no discern-
able motion, ie. I ~ [0,0,0]. In this case the simulated
orientation distribution is uniform in the range [—m, 7]. As
a result, the orientation of such a pixel will be completely
determined by the orientation of its neighbours, due to the
imposed smoothness.



4 Solving for optical flow

Most methods estimate optical flow by minimising a cost
function that trades off fidelity to the brightness constraint
with a local smoothness assumption on the flow field. Due
to depth discontinuities the flow field is typically piecewise
smooth, ie. it contains smooth motion patches separated by
large discontinuities. In most algorithms, the enforcement
of smoothness causes the flow estimate to smooth across
these boundaries resulting in incorrect estimates of flow.
Generally, the resulting cost functions are minimised using
iterative schemes for non-linear optimisations and are
not guaranteed to converge to the global minimum. By
formulating the flow estimation as a labelling problem for
a restricted class of MRF models, we can avoid iterative
methods and guarantee a globally optimal solution. The
exact Maximum A Posteriori (MAP) estimate of this
labelling problem can be obtained by a transformation
into a maximum-flow problem on a graph. This global
minimum tends to preserves large discontinuities.

The maximum-flow solution to the MAP estimate
of the MRF requires the labels to be one-dimensional.
Therefore, for our implementation we chose to parametrise
the two dimensional flow field [v,, v,] into a corresponding
anglemagnitude representation [#;m]. We are unable to
discuss this choice of parametrisation here due to space
constraints.
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Figure 3. Probability distributions of flow ori-
entation and magnitude for different amounts
of texture. Each column shows the con-
ditional distribution of flow orientation and
magnitude for the different values of I; used
in Fig. 2.

For a detailed discussion on MRF’s, the reader is referred
to [6]. In our case, we have a problem of assigning a unique
label (orientation or magnitude) at every site (pixel). One
assignment of labels constitutes a configuration F drawn
from a distribution. The Markovian property of an MRF is

defined to be such that the probability of a site taking on a
certain label f; is dependent only on its neighbourhood. The
Hammersley-Clifford theorem establishes that this proba-
bility can be related to a "clique potential” V.(f) through
the Gibbs distribution [6], ie. P(F = f) o e~ V() where
U(f) = X oc Ve(f), ie. the clique potentials summed over
all cliques. We consider cliques over a local neighbourhood
N (inour case, the 4-neighbourhood of a pixel). In a Bayes
formulation, we are interested in maximising the posterior
probability P(F = f|X = z) where z is the observed data.
Using Bayes rule, we can observe that

P(F=f|X =) x P(X = z|F = f)P(F = ). (6)

Assuming that the noise is iid, we can define the likeli-
hood term to be

PX=zlF=f)=[[Xi=zlFi=f) ()
€S
where the product is over all sites, ie. all pixels. In sum-
mary, the MAP estimate can be rewritten as an energy min-
imisation problem where the energy is

E(f)=)Y V(fify)=D_ Wn(P(X; = z:|Fi = f;))

€S i eN; S
(@)

which contains a contribution from the label configura-
tion and a contribution from the resulting clique potentials.
Typically, the clique potentials reflect our prior knowledge
of the problem and in the case of optical flow they are used
to impose smoothness on the estimated flow field.

4.1 Maxflow solution for optical flow

As mentioned earlier we want to solve the labelling prob-
lem using a non-iterative, global minimisation method. We
can achieve this by expressing E(f) as a flow graph on
which a maximum-flow computation is performed. In this
context we require the clique potential V'(.,.) to be lin-
ear, yielding a smoothness term of the form V (f;, f») =
Blfi — fi|, where 3 is a proportionality constant that con-
trols the amount of smoothness desired in the solution.
Thus, the cost function to be minimized using maximum-
flow computation is

E(f)= > Blfi—fr1-d W(P(X; = z|F; = f3))
€S § eN; €S
9)

The interested reader is referred to [9, 5], for details of
the maxflow formulation and the MRF interpretation. The



proof of the global optimality of the minimum cost cut as-
sociated to the MAP estimate is a simple extension of the
proof of Boykov et al in [3] and is beyond the scope of this
paper. As mentioned earlier, our parametrisation of the flow
field is the (6, m) representation. To solve for the flow, we
compute the conditional probabilities P(8|1,;) as described
in Section 3 by simply factorising the flow velocity distri-
bution P(v|I4) into its angle and magnitude components
P(6|14) and P(m|I,) respectively. In order to solve for the
orientation flow field © (denoting the configuration of ori-
entation for all pixels), Eqn. 9 now takes the form

min ) ) Bl6: — 6y = D In(P(@lly;)  (10)

€S i eN; ieS

It may be noted that since the MRF scheme uses a fi-
nite number of labels, we need to discretise the range of
values of 8§ = [—m,x] into a finite number of steps. Hav-
ing solved for the flow orientation, we need to solve for the
magnitude m for each pixel. Since computing the magni-
tude is much more difficult than the orientation of the flow,
we chose to modify the conditional distribution P(m|I4)
by using the information provided by the computed orien-
tation estimate, ie. to P(m|fs, I4) where 6, is our solution
for the orientation of a pixel. This modification is found to
dramatically improve performance and can be explained by
the fact that the orientation estimate restricts the full flow
to a line thereby reducing the uncertainty of the magnitude
distribution. By combining the two estimates ie. 6 and m
we obtain the optical flow between the two images.

5 Results and Discussion

In this section, we evaluate the performance of our
algorithm by using synthetic and real datasets from Barron
et al. [2], as well as comparing our results with those
of various methods also mentioned in [2]. Run time for
most experiments range between a few seconds for small
images and upto 10 minutes on large images on a fast
workstation. These run times can be easily reduced by
using a coarser discretization of the motion parameters
without significantly affecting the solutions. All results
presented in this section are the raw flow fields obtained by
our algorithms without applying any post-processing.

5.1 Synthetic Images

Our algorithm was run on 5 synthetic sequences of [2],
for which ground truth was provided. We compared our
results with those of the 5 algorithms in [2] that yield 100%
flow field density. The results are summarized in Fig. 4.
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Figure 4. Results of various algorithms from
[2] for various synthetic datasets, compared
to ours (maximum-flow).

Our performance on these datasets is consistently good.
However, these datasets all feature very smooth motion
fields which do not reveal the behaviour of algorithms near
motion discontinuities. This is an an important aspect of
optical flow computation which is handled especially well
by our method.

The most striking result is for Square2, where we
outperform all other methods by orders of magnitude.
This is a case where very sparse derivative information
is available and therefore demonstrates the advantage of
enforcing smoothness globally rather than locally. We
also notice that we perform consistently better than the
correlation-based algorithms (Anandan, Singh).

5.2 Real Images

To demonstrate the performance of our algorithm under
realistic conditions, we computed the flow for 3 real
images. These are the familiar Rubic Cube, Hamburg
Taxi, and NASA Sequence also discussed in Barron et
al. [2]. Since no ground truth is available, we can only
display qualitative results. For a comparative evaluation
with the other algorithms evaluated by Barron et al, we
recommend that the reader consult [2].

The estimated flow field for the Rubic Cube is dis-
played in Fig. 5. This data set features a cube rotating on
a turntable. We observe that the flow closely follows the
motion of the turntable and the cube in both orientation and
magnitude. The flow is well propagated over textureless
regions like the top of the turn table. Moreover, motion
discontinuities are well preserved.

The NASA Sequence features a divergent flow field
induced by a camera zoom. The magnitudes of the motion
are very small, typically much less than 1 pixel. As
illustrated in Fig. 6, the divergence of the flow is well



recovered. Notice errors in the middle of the Coke can
mostly induced by specularities coupled with low motion.

The Hamburg Taxi sequence is an example of multiple
independent motions. Three vehicles are moving indepen-
dently across the sequence. The resulting flow is shown in
Fig. 7. The motions of the vehicles are well recovered and
well localised, making it possible to segment the motions
by using a simple thresholding of the motion magnitudes.
This is an example where accurate recovery of mation dis-
continuities is critical.
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Figure 5. Estimated flow field for the Rubic’s
cube. The motion estimate is accurate and
the discontinuities are preserved.
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Figure 6. Estimated flow field for the NASA
image pair. The true motion is a divergence.

5.3 Recovering Flow Discontinuities

The data sets with ground truth in Barron ( [2]) are
smooth flow fields. However, an important issue in optical

Figure 7. Hamburg Taxi sequence. An exam-
ple of multiple, independent motions

flow estimation is the accurate recovery of flow field
discontinuities since such motion discontinuities occur very
frequently. Unlike most of the non-parametric methods
for flow estimation, our algorithm is particularly suited for
handling motion discontinuities in a natural manner. In
general, since we can compute the exact global minimum
of our cost function, we can accurately recover maotion
discontinuities that may be present.

To illustrate this property, we show a data set with
explicit motion discontinuities. A textured pattern was
used and this pattern has an associated flow field which
is shown in Fig. 8. The flow field has a magnitude of
0.15 pixels every where and the orientation is either 0°
or 90° as indicated. Thus in the case of infinite (or very
high smoothness) the resultant flow field would have an
orientation of 45° throughout. This in turn implies that the
maximum possible error is 45°. In our experiment we are
interested in comparing the behaviour of the Horn-Schunck
algorithm and our method under high smoothness condi-
tions. Since the interpretation of the smoothness parameter
is different in each case, we chose to establish a baseline
for comparison by applying smoothness values in each case
till both of the flow estimates have the same average flow
error. In our case, we chose a high error level of 25°, ie.
we run both algorithms with higher levels of smoothness
till we attain the requisite error level. This is a very high
level of smoothing and helps illustrate the behaviour of
each method under such circumstances.

In Fig. 9, we show the orientation for the flow field
estimates for the Horn-Schunck method and our algorithm.
As can be observed, the large amounts of smoothness has
violated the motion discontinuity by simply smoothing
across the discontinuities. In the case of our algorithm, the
level of smoothness required to achieve the same amount
of error is much higher. However, our globally optimal
solution is such that the penalty for smoothing across
boundaries is very high, hence the motion discontinuities
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Figure 8. Flow pattern used for our experi-
ments on preservation of motion discontinu-
ities.
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Figure 9. The figure on the left shows the flow
orientation for the Horn-Schunck method and
the one on the right shows the orientation
for our method. In both cases, smoothness
is applied till the average error is 25°. As is
obvious, the motion discontinuities are well
preserved in our method.

are accurately preserved. Instead, we observe that the
flow field values in homogeneous regions are moved
closer to each other so as to reduce the penalty paid at the
boundaries. This implies that the algorithm trades off bias
in the solution to preserving motion discontinuities. We
would like to point out that such desirable preservation of
flow field discontinuities will not be possible in sub-optimal
estimates given by most minimisation methods, whereas
it is inherent to our algorithm since we can solve for the
global minimum of our cost function using efficient graph
based formulations.

6 Conclusion

In this paper we have introduced a new method for es-
timating optical flow in a probabilistic framework. We ex-
plicitly account for the inherent inaccuracy of image deriva-

tives using a simple noise model which in turn results in a
probabilistic model of the full flow. By separating the flow
into its angle-magnitude components, we compute the full
flow in two steps, each based on a MAP estimate of an MRF
with linear clique potentials. These estimates are optimal
and obtained efficiently through a maximum-flow computa-
tion over a graph. The recovered flow fields are dense and
retains sharp motion discontinuities. We believe that careful
probabilistic modeling can achieve high levels of robustness
to the significant errors inherent to the problem of optical
flow estimation.
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