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RÉSUMÉ

Cette thèse s’intéresse à la reconstruction d’un modèle 3D à partir de plusieurs

images prises autour d’un objet. Le modèle 3D est élaboré avec une représentation

hiérarchique de voxels sous la forme d’un octree (représentation par une arborescence

à huit descendants). Pour ce faire, un cube englobant le modèle 3D est calculé à

partir de la position des caméras. Ce cube contient tous les voxels et il est aligné

selon le système de référence des caméras. Ce cube définit aussi la position de caméras

virtuelles qui seront alignées sur chacune des faces du cube.

Par la suite, le modèle 3D est initialisé par la détection d’une enveloppe convexe

qui se base sur la couleur uniforme du fond des images. Cette enveloppe permet de

creuser la périphérie du modèle 3D. Pour les voxels étant toujours actifs, un coût est

calculé pour évaluer la qualité de chaque voxel à faire partie de la surface de l’objet.

Ce coût tient compte de la similarité des pixels provenant de chaque image associée

à la caméra virtuelle. Le coût est aussi pondéré en fonction de l’angle de la caméra

ayant généré chaque image par rapport à l’angle de la caméra virtuelle.

Finalement et pour chacune des caméras virtuelles, une surface est calculée basée

sur le coût en utilisant la méthode de SGM (semi-global matching). La méthode

SGM tient compte du voisinage lors du calcul de profondeur et cette thèse présente

une variation de la méthode pour tenir compte des voxels précédemment exclus du

modèle par l’étape d’initialisation ou de creusage par une autre surface. Par la suite,

les surfaces calculées sont utilisées pour creuser et finaliser le modèle 3D.

Cette thèse présente une combinaison innovante d’étapes permettant de créer un

modèle 3D basé sur un ensemble d’images existant ou encore sur une suite d’images

capturées en série pouvant mener à la création d’un modèle 3D en temps réel.



ABSTRACT

This thesis concentrates on the reconstruction of a 3D model from multiple images

taken around an object. The 3D model is built with a hierarchical representation of

voxels using an octree (tree representation with eight children per node). In order to

achieve this, a cube surrounding the object is calculated from the camera’s positions.

This cube contains all the voxels and it is aligned with the camera’s reference system.

The cube also defines the position of the virtual cameras which are aligned to the

faces of the cube. After that, the 3d model is initialised with a detection of the

visual hull that is based on the uniform color of the images’ background. This visual

hull information is used to pre-carve the 3D model. Then, for the voxels still active,

a cost is calculated to evaluate the quality of each voxel as being on the surface

of the object. This cost takes into account the similarity of the pixels from each

images associated to a virtual camera. The cost is also adjusted to take the angle

of the camera, with regards to the virtual camera, into account. Finally a surface

is calculated for each virtual camera based on the voxel cost and by using the SGM

method (semi-global matching). The SGM method takes the surrounding voxels

into account when calculating the depth and this thesis presents a variation to this

method where we take the previously excluded voxels into account. The excluded

voxels coming from the initialisation step or from the carving done by another virtual

camera. The resulting surface is used to carve the voxel representation. This thesis

presents an innovative combination of steps leading to the creation of a 3D model

from a set of existing images or from a series of images capture one after another

leading to a real-time creation of a 3D model.
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NOMENCLATURE

η Quality factor of an image.

x̄ Homogeneous coordinate(x, y, z, 1)>

Alevel,θ,s Matrix converting a viewpoint’s position into a world coordinate

Blevel,θ Matrix converting a viewpoint’s position into a position in the reference

viewpoint.

n maximum level reached by the octree, 2n voxels per side for a total of 23n

voxels.

Pf ,c,r,t Matrix converting a world position into a camera screen position.

←−
b Bounding box vector.

←−c Camera vector.

←−v Virtual camera vector.

ψθ List of cameras associated to a viewpoint.

θ Angle of the view-point



Chapter 1

INTRODUCTION

”The goal of multi-view stereo is to reconstruct a complete 3D object model from

a collection of images taken from known camera viewpoints” Seitz et al.[2].

In this master thesis, our goal is to tackle the problem of reconstructing a 3D

object from multiple images. Because of the inherent ambiguity of this problem,

it is not a simple task. Multiple methods exist to process the images into a 3D

object. Some of them will create a 3D object from a cloud of points retrieved from

correspondences between images [3]. Others will stitch multiple surfaces together to

create a volume [4] but this requires alignment and integration into a finished 3D

model. The method we propose here uses a volume of voxels to create a model of

the 3D object; the advantages are the simplification of the aggregation of surfaces,

the easy parallelisation of the processing of surfaces, and the practical hierarchical

nature of the octree data structure [5]. Consequently, the main contribution of our

approach are the following:

1. The use of a cost function that takes the position of the camera (with regards

to the virtual camera position) into account.

2. The modification of the SGM algorithm to take into account previously carved

voxel, either from visual hull or a previous surface carving.

3. The simplification of the aggregation of surfaces using virtual cameras. The

finish 3d model defines the reference (not the camera positions).
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4. The modification of the SGM algorithm to fix the P2 parameter when multiple

images are used with a virtual camera.

There are two ways a 3D model can be created. One way is when all the images

are available from the start as in a pre-existing dataset. The other way is when the

images are captured one after the other (on the fly), like for a real time scanner

where the 3D model is refined as more images are captured. In this thesis, the former

method is the one used to get the results. There will be some thoughts given to the

second method as well.

The steps to create the 3D model are:

1. Calibration and lens aberration correction - chapter 2.

2. Obtain the bounding box of the work area and perform background segmentation

(appendix A) which provides a preliminary carving - chapter 3.

3. Calculation of the cameras association and cost function - chapters 4 and 5.

4. Calculation of cost smoothing and surface creation which leads to the final

carving - chapter 6.

1.1 related work

A method by Li et al.[6] is using depth map merging for mutli-view stereo reconstruction

(MVS). In a first step, the method calculates depth maps from chosen image pairs.

Then, highly correlated points are matched between depth maps using a DAISY

descriptor. A track is then created that keeps a relation between these matching

points. These track are then processed using a bundle optimisation step that will

keep reliable tracks, this creates an initial point cloud. A refine steps is then used to

increase point’s accuracy and calculates normal which will be used to create a mesh

of the model. This method is sensible to the accuracy of the depth maps.
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Another method by Soremann at al.[7] uses a min-cut/max-flow solution on a

graph representation of a volumetric aggregation of dense maps to obtain a watertight

3D model. The dense depth maps is calculated using a plane sweep method and the

resulting depth maps are transformed into a graph representation with edge weights

coming from the calculated depth maps. The results is the solution of a min-cut/max-

flow solution on the weighted graph.

A third method by Schroers et al.[8] tries to find a surface by minimizing an

energy function based on the total variation of signed distances from depth maps to

the surface position. Depth maps are calculated using a stereo based method. The

sign distance is smoothed while optimizing the surface using a gradient descent. This

method uses significant processing.

Other methods are provided in the Middleburry reference list [9].

1.2 current work

The main idea of this thesis is to reduce the complexity of surface merging, like we saw

in the methods previously described in 1.1 this task can be quite complex. In order

to simplify the surface merging, a global reference frame on which a 3D model will

be reconstructed is created. The information from multiple images is used to carve

the voxels by using the depth coming from the calculated surfaces. This carving is

occurring on multiple view-points around the reconstructed 3D model. These view-

points are, in fact, virtual cameras facing the sides and edges of a cuboid volume

that sits on the world reference. The surfaces are created following a smoothing step

performed by a semi-global method [1].

The use of voxels can lead to a complex problem if the resolution is high because

it requires a lot of resources (cpu and memory). By using a hierarchical method

and by only processing areas where the object is present (as detected by preliminary

steps) it is possible to reduce the resource usage. It is then possible to achieve better
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performance than O(β3) where β is the number of voxels per axes at the maximum

voxel level.



Chapter 2

CAMERA

Since 3D reconstruction relies on image only, it is important to accurately model

the camera that took these images. This chapter highlights the basic concepts of

camera modeling.

2.1 Camera matrix

The camera matrix is the combination of the external and internal parameters of the

camera. The external parameters are the physical displacements (translations and

rotations) with regards to a global reference system that will bring the camera at

the position and direction from which the image is taken. The internal parameters

represent the projection of a point in the scene, expressed in the camera frame of

reference, to a point on the camera sensor.

The following matrix (2.1) contains the translation t, the rotation r, the center of

the camera sensor c and the focal distance f . More information can be found in [10,

p. 49].

Pf ,c,r,t =


fx 0 cx 0

0 fy cy 0

0 0 1 0

0 0 0 1




r11 r12 r13 0

r21 r22 r23 0

r31 r32 r33 0

0 0 0 1




1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 (2.1)

When projecting a world point onto the screen, the depth information (z) is lost

in the conversion; only the x and y position on the screen remains.
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(u, v, w, 1)> = Pf ,c,r,t · (xw, yw, zw, 1)>

Where (u, v, w)T is a 2D projective representation of the projected point on the

screen. The Euclidian sensor coordinate (xs, ys) is obtained from (u, v, w) as:

(xs, ys) =
( u
w
,
v

w

)
The camera center position (the camera origin) can be retrieved from the inverse

of the matrix Pf ,c,r,t by taking the last column (Ox, Oy, Oz)
> of P−1.

P−1 =


. . . . . . . . . Ox

. . . . . . . . . Oy

. . . . . . . . . Oz

. . . . . . . . . 1


2.2 Lens correction

Most of the time, if not all the time, the lens of the camera suffers from certain

aberrations that need to be corrected before a pixel position can be used to calculate

a cost value. These aberrations can be corrected by taking into account the distance

of the pixel position from the center of the aberration and by calculating a Taylor

approximation based on that distance. Barrel and pincushion aberrations [10, p. 52]

can be corrected like this. More severe or nonlinear aberrations can be corrected with

a look-up table that maps every pixel position to the correct position.

2.3 Limitations

Some constraints and limitations that are not addressed by this thesis are listed here:
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2.3.1 Lack of texture (ill-posed problem)

When a region of the image does not contain any texture, it is difficult to match it

to other image and to retrieve a valuable depth. The smoothing performed by SGM

(chapter 6) on the cost will propagate the depth from the boundaries of the texture

less region but there could be some improvements.

2.3.2 Non-Lambertian surfaces

The surface of the object used in this thesis are assumed to be Lambertian (no

reflection). This simplifies the evaluation of a cost function because a point is

guaranteed to have the same color when viewed from different angles. In order to cope

with non-Lambertian surface, a method of cost calculation like Census[11] would have

to be used. The Census matching cost is described has having the highest radiometric

robustness in the cost methods comparison done in [12].

2.3.3 Translucency

Translucency surface is adding a lot of complexity to the reconstruction of a 3D

model. This could be the subject of a Ph.D. and it is not handled in this thesis.

2.3.4 Image noise

Noise is always present in the captured image. A direct impact of noise is the

variations it causes on the cost values and the erroneous depth retrieved from that.

Fortunately, the smoothing step of SGM and the combination of multiple images

reduce the impact of the noise.

2.3.5 Imperfect calibration

When the calibration is not precise, unrelated pixels are matched together and will

lead to imprecise results.



8

2.3.6 Differences in exposures, white balance

Differences in camera parameters from one pose to another is not handled in this

thesis. Some preliminary steps like histogram equalization and color corrections would

be needed to be able to calculate a cost value from multiple images.

2.4 Expectations

Even with all these restrictions, the method developed in this thesis gives good results

and is usable in many context.



Chapter 3

MODEL INITIALIZATION

In this chapter we will see how to calculate a bounding box based on the cameras

position. We will also see the octree construct that is used to describe the 3D model.

Finally, we will see how to use a visual hull to initialize the octree with a crude

representation of the 3D model.

3.1 Octree

An octree is a hierarchical structure used to divide a volume in

multiple subdivisions. Each subdivision can be recursively splitted

into eight subdivisions of equal size. All subdivisions are voxels.

The first division starts at level 0 and the last one ends at level n.

There is only one voxel at level 0 and it is the size of the bounding

box. All the other subdivisions are completely filling the voxel of

the lower level1 that they are associated to2. The process of dividing the volume goes

on with the level increasing until a sufficient voxel resolution is reached. To specify

a voxel, the position, level and viewpoint angle (x,y,z,level,θ) are needed.

Each entry in the octree defines whether the voxel is inside the volume (white),

outside the volume (black) or partially inside/outside (gray) in which case another

level of subdivision is needed and/or present. Octree was demonstrated in [13] to

reconstruct an object in a process called shape from silhouette.

Octree representation is relatively simple since it only has 3 states (empty, full,

1 The lower the level is, the bigger the voxel size. Voxels at higher level are smaller in size than
voxels at lower level

2 See Appendix B for algorithm details
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partial) and each level of the octree requires O
(
2level

)
of memory. For example, an

octree using 1 byte per voxel with 9 levels will use 147 Megabytes (equation 3.1).

This amount can be reduced to 37 Mega-Bytes if we use 2 bits per entry.

OctreeSize(n) =
n∑
k=0

23(n−k) (3.1)

Octree representation can help reduce cpu and memory usage when a background

thresholding can be made on the images. If the object can be separated from the

background, then it is possible to create a convex hull by marking off some voxels of

the object. Voxels identified as not being part of the object will not be used in the

cost calculation and the SGM smoothing. Furthermore, if many voxels are marked

off at a lower level (after percolation) it means a significant volume of the bounding

box does not need to be processed. Percolation is the process by which all lower levels

are updated from the higher level. To gain insight on octree related algorithms see

Appendix B.

An advantage of using an octree construct is coming from its hierarchical nature.

Some processing needs to be done at a high voxel resolution (higher level), for instance

the cost calculation. Other processing can be done using only a lower resolution, for

instance collision avoidance. Figures 3.1a and 3.1b show two representations of the

same 3D model at level 6 and 9. We see that even if the resolution is lower, the object

is still recognizable and useable.
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(a) 3D model at voxel level 6 (b) 3D model at voxel level 9

Figure 3.1: 3D model at different voxel levels
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3.2 Bounding box

In order to infer a bounding box containing all the voxels, the position of the cameras

are used to calculate a single point←−c . This point←−c will be the center of a sphere of

radius µ and the bounding box will be calculated from this sphere3 since they have

the same center point. Figure 3.2a illustrates a bounding box surrounded by the

poses of each camera.

(a) Camera poses (b) Inferred bounding box(yellow) englobing the
voxels

Figure 3.2: Bounding box

3 This assertion is only valid if the camera poses are made around the objects and are pointing
toward the object.
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In order to determine this bounding box center point ←−c , we try to find ←−c that

minimized:

(ρ) µ + (1− ρ) ε (3.2)

where

ρ = 0.2

and

µ =
1

n

n∑
i=1

∥∥←−oi −←−c
∥∥

and

ε =
n∑
i=1

∥∥∥∥∥
(
←−c + µ

( ←−oi −←−c∥∥←−oi −←−c
∥∥
))
−←−oi

∥∥∥∥∥
with ←−c initialised to:

←−c =
1

n

n∑
i=1

←−oi

Minimizing equation 3.2 will minimized the error ε and the radius length µ. This

makes the bounding box closer to the cameras. The error for a given center point

←−c is calculated by equation 3.2. Multiplying the radius µ by a unit vector leaving

the bounding box’s center, in direction of the camera’s center, gives an error vector.

The vector leaving the bounding box’s center and reaching the camera position ←−oi

gives a camera vector. The error is the sum of the norm of the difference between

the error vector and the camera vector. The factor ρ is used to reduce the weight of

the radius in the minimization. A value of ρ = 0.2 was used with good results. But

other values will also give good results because this parameter is not sensible, it is
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only used to keep the radius length µ short which in turn will keep ←−c close to the

cameras position ←−oi .

From the calculated radius µ we can evaluate the side of the bounding box with

the following equation:

s = α

√
4µ2

3
(3.3)

This equation gives the biggest bounding box that fits inside a sphere of radius µ.

A ratio α is used to reduce the size of the bounding box because it is not necessary to

have the bounding box touching the camera; it is more important to have a smaller

bounding box closer to the object than to have a big bounding box containing the

object because the number of voxels increases with the bounding box size. The use

of this reduction factor with a value of 0.5 has demonstrated good results on the test

datasets (Middlebury). The parameter α could be ignore with a value of 1.0 and the

reconstruction will give the same results except for the voxel resolution that could

increase. This parameter is a way to reduce the resources usage (memory and cpu)

when working on pre-defined dataset.

Figure 3.2b shows the calculated bounding box4 in yellow. The red box represents

the dataset suggested bounding box. We see that the red bounding box is included

inside the yellow bounding box. The calculated bounding box is quite large compared

to the suggested one and it will require further processing in order to reduce its size

to be closer to the real object. The octree along the convex hull will perform this

duty by reducing the number of voxels to be processed by carving off the volume.

3.3 Serial processing of camera poses

In the case where camera poses are received one after the other, like when a camera

is free handed around an object, each pose is processed as they come. The calculated

radius and bounding box center will change along the way. The more camera positions

4 Middlebury’s temple ring datasets, 47 poses
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there are, the more precise the bounding box. It is better to wait for at least 3 camera

poses before starting to calculate a bounding box and processing the voxels. Once a

first bounding box has been defined we get the center c and the size s of the bounding

box. Two scenarios can happen when new camera poses are taken into account.

In the following 2 scenarios, the minimum voxel size is used to align the bounding

box position and size changes. The minimum voxel size is defined by the maximum

level reached by the octree and by the size of the bounding box’s side s. The minimum

voxel size is discussed in section 3.7. It is important to note that when applying

changes to the center position or size of the bounding box, the octree construct must

be percolated.

3.3.1 Bounding box position change

When the calculated position of the bounding box center changes, the new position

must be aligned to the smallest voxel size. This is done by rounding the position

along the axes x,y, and z to the smallest voxel size or s
2n

.

The size of the bounding box must also be adjusted. The old and new positions

of the bounding box corners are used to calculate a new bounding box size. For each

axis we choose the coordinate that is creating the biggest bounding box.

Sx = Max (OldPosX,NewPosX)−Min (OldPosX,NewPosX) (3.4)

Equation 3.4 calculates the size of the bounding box side for the X axis. The same

thing is done for the Y and Z axes and the new size is calculated by equation 3.5.

S = Max (Sx, Sy, Sz) (3.5)

3.3.2 Bounding box size increase/decrease

When the bounding box size changes, Equation 3.5 will give the new size.
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3.4 Coordinates systems

When the camera poses (the camera matrix) are provided it is relatively straightforward

to find a valid bounding box like we saw in section 3.2. The camera positions provide

direct information on the orientation of the bounding box because of the reference

frame used by the external camera parameters. Since there are no guarantees that the

object under reconstruction is at the center of the camera’s reference frame, another

reference frame, which will be called the bounding box reference frame, is built from

the bounding box center calculated by Equation 3.2. The orientation is simply the

natural axes obtained from the bounding box coordinates which are the same as

the camera’s coordinate system (camera external parameters). On this coordinate

system, viewpoints are defined by an angle θ and they defines multiple planes on

which the surfaces will be calculated. Figure 3.3a shows the world reference system

and the coordinate system for each viewpoints. Figure 3.3b shows different octree

levels and the voxel separation for the first depth plane. This is discussed in more

detail in section 3.7.
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(a) These figures shows the coordinate systems of each viewpoint and the world reference. 2
reference-frames are shown on each bounding box (to save space). The z axis (depth) is always
pointing inward.

(b) Multiple octree levels

Figure 3.3: Octree axes and levels
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3.5 Coordinates conversion

The method to reconstruct the 3D object is to create surfaces from different viewpoints.

These viewpoints have independent coordinate system with the origin at the upper

left corner and the depth going inward (toward the object). All coordinate systems

respect the right hand rule. Figure 3.4 shows the viewpoints and their axes.

Figure 3.4: This figures shows an exploded view of the viewpoints and their axes.

To convert a point x̄viewpoint from a viewpoint coordinate system to a world

coordinate system x̄world, multiple transformations need to be applied to that point,

represented as a homogeneous vector (x, y, d, 1)>. Equation 3.6 shows the operations

needed to accomplish this transformation. The details of the inner operations are

defined in equations 3.7 to 3.11.

x̄world = [ Tc ] · [ Rvp ] · [ Tbb ] · [ Rz ] · [ Sv ] x̄viewpoint (3.6)
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Tc =


1 0 0 cx

0 1 0 cy

0 0 1 cz

0 0 0 1

 (3.7)

Rvp =


cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1

 (3.8)

Tbb =


1 0 0

(
− s

2
+ s

2level+1

)
0 1 0

(
s
2
− s

2level+1

)
0 0 1

(
s
2
− s

2level+1

)
0 0 0 1

 (3.9)

Rz =


1 0 0 0

0 cos π − sin π 0

0 sinπ cos π 0

0 0 0 1

 (3.10)

Sv =


s

2level
0 0 0

0 s
2level

0 0

0 0 s
2level

0

0 0 0 1

 (3.11)

Equation 3.7 performs a translation to take the center position of the bounding box

into account. Equation 3.8 rotates the view-point plane around the y axis. The angles

for the rotation are: 0, π
4
, π
2
, 3π

4
, π, 5π

4
, 3π

2
, and 7π

4
radian. Equation 3.9 translates the

coordinate axes from the middle of the bounding box to the upper left voxel middle

position, taking into account the level of the voxel. Two voxels at position (0,0) but
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at different levels will not have the same world coordinate. Equation 3.10 rotates the

coordinate axes to have the Z-axis pointing inward. This allows the z values to always

be positive when the surface is calculated. Equation 3.11 scales the coordinate from

2level voxels (voxel resolution) to s (bounding box size).

Equations 3.12 shows all operations together. It is important to note that these

operations are only valid for viewpoint as defined in figure 3.3a (on the right), which

are on a horizontal plane. Having viewpoints on top or at angles of the horizontal

plane would require another rotation in the equations.

m = −s
2

+
s

2(level+1)

p =
s

2
− s

2(level+1)

Alevel,θ,s =


s·cos θ
2level

0 − s·sin θ
2level

cx +m · cos θ + p · sin θ

0 − s
2level

0 cy + p

− s·sin θ
2level

0 − s·cos θ
2level

cz + p · cos θ +m · sin θ

0 0 0 1

 (3.12)

x̄world = Alevel,θ,s · x̄vp (3.13)

Equation 3.13 converts a coordinate from the viewpoint’s coordinate system to the

world coordinate system. The matrix is defined by the rotation angle θ, the number

of voxels 2level and the size of the bounding box s.
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3.6 From one viewpoint to reference viewpoint

There is only one octree construct that is maintained and it is associated with the

viewpoint at angle θ = 0 which is the reference viewpoint. To assess the state of a

voxel from another viewpoint, a transformation of coordinate needs to be done.

We saw that a voxel can be translated to a world coordinate with equation 3.13.

If we invert that equation, we can get the viewpoint from the world coordinate. The

equation is repeated here but the position on the viewpoint is annotated with the

viewpoint angle θ and θ2.

x̄world = Alevel,θ,s · x̄vpθ

x̄vpθ2 = A−1
level,θ2,s · x̄world

x̄vpθ2 = A−1
level,θ2,s · Alevel,θ,s · x̄vpθ

x̄vpθ2 = Blevel,θ · x̄vpθ

When the angle θ2 is the reference viewpoint, the angle is 0 and the equations

simplify to a new matrix: the B matrix.

Blevel,θ =


cos θ 0 − sin θ −1

2

(
2level − 1

)
(cos θ − sin θ − 1)

0 1 0 0

sin θ 0 cos θ −1
2

(
2level − 1

)
(cos θ + sin θ − 1)

0 0 0 1

 (3.14)

As a test, if we take θ to be 0, which means we are converting a voxel coordinate
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from viewpoint 0 to the same viewpoint (so we do not expect to have any changes in

the position) we will get from Equation 3.14 a B matrix equal to the identity matrix.

It is interesting to note that the B matrix does not depend on s, it only depends on

the angle and octree level.

3.7 Octree level and bounding box

The relation between the pixel and the voxel is made through the camera matrix P

from Equation 2.1 on page 5 and the world position matrix Alevel,θ,s. This can be

seen in Equation 3.15 and figure 3.5 shows this graphically.

x̄screen = Pf ,c,r,t · Alevel,θ,s · x̄vp (3.15)

Figure 3.5: This figures demonstrates the projection of 4 voxels onto one camera.

By reversing the previous equation, we obtain a relation that will convert a screen

position into a voxel position, as can be seen in equation 3.16.

x̄vp = C · x̄screen (3.16)

With:

C = A−1
level,θ,s · P−1f ,c,r,t

If we wanted to calculate the maximum level at which the distance in the image
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is 1 pixel for a delta position of 1 voxel, we could use a function that will calculate

the level at which the voxel distance is lower or equal to 1, resolving equation 3.17

would provide this information.

∥∥∥C · (x, y, z, 1)> − C · (x+ 1, y, z, 1)>
∥∥∥ <= 1 (3.17)

With the unknown variable being the level, this previous function, while complex,

would provide the maximum level to use. Going higher than the maximum level

would use sub-pixel information from the images. Unfortunately, this function will

be quite big and will depend upon many variables (θ, s, CameraMatrix) and the x

and y position on the screen so it is not easy to represent a simple function resolving

this. Nevertheless it is practical to calculate this for a couple of positions, cameras

and viewpoints to get a good idea of the maximum level to use. Table 3.1 shows the

pixel positions for 2 voxels side-by-side. We see that the greater the level, the closer

the pixel position gets and it eventually becomes within 1 pixel of distance at level

10.

Table 3.1 tells us that for a specific camera, viewpoint, position, and bounding

box we need to have 210 = 1024 voxels to achieve sufficient resolution in order to use

the pixel value directly in a cost function (discussed in Chapter 5).

3.8 Visual hull

The bounding box defines the external limits for the reconstruction. Finding the

bounding box size and position was the first step of the 3D model initialization and

was explained in section 3.2. As a second step, we can create a mask by background

segmenting the images and then applying this mask to the voxel to create a visual

hull5. Appendix A explains a method to perform background segmentation on images

with uniform background.

5 some images are well suited for background subtraction, like Middlebury’s Temple and Dino
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Level voxel at {x,y} voxel at {x+1,y} distance
1 {579.917,-30.1624} {71.0033,-7.23606} 509.43
2 {436.715,102.385} {161.256,110.644} 275.58
3 {357.269,175.92} {213.587,178.994} 143.71
4 {315.33,214.739} {241.898,215.972} 73.44
5 {293.77,234.695} {256.643,235.23} 37.13
6 {282.838,244.814} {264.169,245.06} 18.67
7 {277.333,249.909} {267.972,250.027} 9.36
8 {274.57,252.466} {269.883,252.524} 4.69
9 {273.187,253.747} {270.842,253.775} 2.35
10 {272.494,254.388} {271.321,254.402} 1.17
11 {272.148,254.708} {271.561,254.715} 0.59
12 {271.975,254.869} {271.681,254.872} 0.29

Table 3.1: Pixel positions calculated from 2 voxels at positions (x, y) and (x+ 1, y)
for multiple levels.

The silhouette provides direct information on whether a voxel is part of the object,

part of the background or both (when the bi-linear interpolation on the mask is on

a boundary). Projecting each voxel at level n on all the images associated with the

view-point and verifying that at least one of the projection is on the background

allows to mask off voxels in the octree. The Octree will be populated like this at the

maximum voxel resolution and percolation will be used to populate the lower level of

the hierarchy. Figure 3.6a shows a bounding box with one big voxel in red projected

to 2 cameras. We see that the voxel is not part of the background so the mask will

not be modified. Figure 3.6b presents some of the masks that were used to create the

visual hull of Figure 3.6c.
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(a) The voxel in red is projected to masks. When a voxel falls on the
background, the voxel in the Octree is marked as empty.

(b) Some of the binary masks used to create
the visual hull of figure 3.6c

(c) visual hull result on Middlebury temple

Figure 3.6: Visual hull processing



Chapter 4

CAMERA ASSOCIATION

Typical mutli-view models provide arbitrary camera viewpoints in order to compute

the 3D model. The present method uses pre-defined viewpoints in the reference

frame of the reconstructed volume. These viewpoints are the point of view of virtual

cameras. The virtual cameras are cameras that do not exists (they did not provide 2D

images) but are used to calculate a surface from their view point as if they existed.

In order to do that we need to associate real cameras to virtual cameras. Figure

4.1a demonstrates the various viewpoints 1 used to create the surfaces. Each surface

created defines the carving depth.

In order to do this association, three vectors are defined:

Virtual camera vector is a vector normal to the sphere containing the bounding

box and pointing toward the center of the bounding box as can be seen in

figure 4.1a. This vector is called ←−v .

Camera vector Vector formed by the origin of the camera and the camera center

point. This vector is normal to the sensor plane as can be seen in figure 4.1c.

This vector is called ←−c .

Bounding box vector Vector from the origin of the camera to the center of the

bounding box. This vector is used to make sure the camera is in front of the

bounding box as can be seen in figure 4.1d. This vector is called
←−
b

1 Viewpoints are also called virtual cameras, both terms are used and specifies the same thing.
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These vectors are used to assign cameras to viewpoints and they are normalised

(vector length is 1).
←−v∥∥←−v ∥∥ · ←−c∥∥←−c ∥∥ = cos η (4.1)

Equation 4.1 calculates the angle η between the vectors←−v and←−c . This angle will

provide information on how parallel the camera plan is to the virtual camera plan.

This value is also used as a quality factor in the cost function discussed in chapter 5.

(a) Virtual camera vector ←−v (b) Camera relation to virtual cameras

(c) Camera vector ←−c (d) Bounding box vector
←−
b

Figure 4.1: Virtual cameras
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4.1 Camera selection

An image is associated to one or more viewpoints using the value obtained by the

projection of the virtual camera vector←−v over the camera vector←−c . The value must

be positive to be valid because both vectors must be pointing in the same direction.

Also the projection of the camera vector←−c over the bounding box vector
←−
b must

be positive otherwise the camera is on the other side of the bounding box, looking

away.

←−c ·
←−
b > 0

When processing a viewpoint, the camera(s) assigned to it are used. But, it is also

possible to use camera(s) assigned to another viewpoint when the projection value

is positive. For instance, in figure 4.2a the camera represented with a blue arrow

is associated with the normal vector having a projection value of 0.1969, which is

the maximum value of all the normal. But other viewpoints can benefit from this

camera’s information like the viewpoints at projection values 0.132922 and 0.145536.

(a) Normal Vectors (b) Cameras associated to a viewpoint

Figure 4.2: Cameras association to viewpoints

In the case when a camera only has part or none of the bounding box in its visual
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field, the projection of the world position of a voxel onto the camera will fall outside

the screen and the camera’s information will not be used.

Because the chance of occlusions increases with the angle, the cost function must

take this information into account when calculating the cost value.

Equation 4.2 is the list of cameras for a specific viewpoint. The list includes the

camera matrix P as well as the angle η between the camera and the virtual camera.

ψθ = {{Pf ,c,r,t, η}1, {Pf ,c,r,t, η}2, ..., {Pf ,c,r,t, η}p, } (4.2)

This cameras set will be used in the cost computation presented in the next chapter.



Chapter 5

MATCHING COST

The cost is a value that provides information about the likelihood of associating

a specific depth to a voxel from a particular viewpoint. The cost can also be seen

as distance function and the algorithm will have to pay this cost when choosing a

depth for a voxel position on a viewpoint. This cost, or distance, is minimal for

voxel with high probability of being on the surface. There are multiple ways the

cost can be calculated but the basic idea is to obtain a value that can be compared

with other cost values in order to find the minimum cost. This minimum cost will

be the depth where the surface of the 3D object has good chances to be located.

But many factors could disturb the purity of the cost value. The surface property

(Specular vs Diffuse), occlusions (a first camera does not see everything a second

camera sees), lighting condition (shadows), camera calibration error (imprecise P

matrix), lens aberrations, and mathematical rounding errors are all factors that

influence the quality of the calculated cost. All the images available for a viewpoint

could contribute to calculating the cost, as in plane sweep method [14]. The quality

factor (the angle of the camera) is used to adapt the cost contribution of the camera.

5.1 1D camera and disparity

In order to understand the relation between cost and depth, the present section will

illustrate the cost calculation for a 2-dimensional world captured by a 1-dimensional

camera sensor (as opposed to the normal camera usage on a 3 dimensional world with

2 dimensional sensors).
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5.1.1 1D image capture

Figure 5.1a shows two 1-dimensional cameras used to simultaneously1 capture an

object. The two cameras are located side by side and are pointing toward the middle

of the object. The pixels seen by the camera’s sensors are shown in figure 5.1b.

(a) Two 1-D cameras looking at an object (b) Pixel matches

Figure 5.1: 1-D Camera costs and depth

5.1.2 1D cost calculation

The cost is calculated for all possible depths and this is done for each pixel of the

reference sensor (the bottom one in figure 5.1b). For example, if we take the rightmost

red pixel from the bottom sensor and try to match this pixel with the other sensor

(the one shown on top) we will get a cost value for each possible match. The first

best match will be with the top rightmost red pixel with a distance of 1 pixel to the

left as shown on figure 5.1b. This distance of 1 pixel is called the disparity. We can

do the same thing with the bottom blue pixel and we will get a disparity of 4 pixels.

The red pixel is further away (from the cameras) than the blue pixel. Since the depth

is inversely proportional to the disparity it works with the disparity value that we

retrieved.

1 the simultaneous capture is only important if the scene is not static
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5.2 Simple cost value

In the previous example, the cost was calculated for 2 RGB pixels. The following

equations calculates the cost for any number of pixels where a pixel is composed of 3

channels (RGB). The ensemble φ contains all the pixels used to calculate the cost as

seen in equation 5.1.

p = (R,G,B)

φ = {p1,p2, ...,pn}

µ =

n∑
k=1

pk

n

cost(φ) =
n∑
k=1

∑
i=RGB

‖pk − µ‖i (5.1)

The cost value would be minimal when comparing pixels of the same colour. This

simple method of cost calculation is described in [15] and it has shown to give good

results.

5.3 Bilinear interpolation

When using the A and P matrix to convert a voxel position into a world position we

do not get an integer value. We use a bi-linear interpolation to get the correct RGB

value. The figure 5.2 demonstrates the red pixel value being bi-linearly interpolated

from the surrounding pixels. A first interpolation is made along a first axis followed

by another interpolation to get the value at the red pixel position. A bilinear function

receives an image and pixel position and returns the interpolated pixel.
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Figure 5.2: Red pixel value bi-linearly interpolated from 4 surrounding pixels.

5.4 Cost calculation on a viewpoint

The cost calculation for a voxel on a specific viewpoint needs to have the parameters

of the viewpoint (level, θ, s), as seen with matrix A in equation 3.12 on page 20, and

the voxel position. The cost function is like this: costlevel,θ,s(x, y, d) and it depends

on the set of camera ψθ as seen in equation 4.2 on page 29. The list φ is the list

of bilinearly interpolated pixel values calculated on the images Ik with the camera

matrices Pk and the viewpoint coordinate to world coordinate conversion matrices

Alevel,θ,s.

ψθ = {{P1, η1}, {P2, η2}, ..., {Pp, ηp} (5.2a)

φ =
{
Bilinear(Ik,Pk · Alevel,θ,s · (x, y, d, 1)>)

}
∀ Pk ∈ ψθ (5.2b)

cost(x, y, d) = cost(φ) (5.2c)

The steps to retrieve a pixel value are as follows:

• From the voxel position (x, y, d), the world position is calculated with Matrix
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A (equation 3.12).

• From the world position, the camera sensor position is calculated with Matrix

P (equation 2.1).

• From the sensor position, the pixel value is calculated with bi-linear interpolation.

• For all cameras associated with the viewpoint, the ensemble φ is constructed.

• The cost is calculated taking the angle η into account to reduce the importance

of the cameras not facing the viewpoint.

5.5 Cost for big voxels

It may be necessary to calculate the cost for a voxel that is not at the maximum

level of the octree. This could happen if the image resolution is much bigger than the

required 3d model voxel resolution. In this case, each voxel will span multiple pixels.

5.5.1 Patch of pixels

The voxel corners are projected to the images associated with the viewpoint. These

projections define a region on the images that could span multiple pixels. This region

is called a patch of pixels. This patch can be relatively big, for instance Figure 5.3a

shows a voxel projected onto the images and we can see that this voxel is not a good

match because it covers a heterogeneous area of the images.

To determine the cost of a voxel projection, we must measure the dissimilarity

between the patches. One way of measuring this is to aggregate the information

of each patch into a histogram [16]. Afterwards, the dissimilarity of each patch is

calculated by measuring the correlation between the histograms as seen in equation 5.3.

It is not efficient when we are comparing more than two histograms.
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(a) Octree voxel representation (b) Voxel projections

Figure 5.3: Voxel projection

dcorrel(H1, H2) =

∑
i

H
′
1(i) ·H

′
2(i)√∑

i

H
′
1(i) ·H

′
2(i)

(5.3)

H
′

k(i) = Hk(i)−
1

N

∑
j

Hk(j) (5.4)

5.5.2 Cost relation between levels

Another way to compare patches of pixels is by calculating the cost at the highest

level n of the octree (the smallest voxel) and then performing the percolation. There

is no gain in doing this when working at a lower level except to have a simple solution.

5.5.3 Scaling image to fit level

A third way of calculating the cost at a lower level is to use equation 3.17 on page 23

where a maximum level is found with a pixel distance equal to 1. We could use the

information from the pixel distance along the level we want to use and scale down

the image to get a distance of 1. For example, if we wanted to work at level 7, we
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could find a scaling factor by looking at table 3.1 where we see that the pixel has a

distance of 9.36 at that level. Scaling down the image from 640x480 to 68x51 will

change the distance in the image to 1 pixel. The camera matrix would need to be

adapted in that case.

5.6 Cost line on image

By taking voxel positions along the z axis (depth) of a virtual camera and by projecting

these positions to an image associated with the virtual camera it will draw a series of

dots on the image. If the voxel resolution is high, this series of dots will look like a

continuous line on the image. This line is called a cost line. The figure 5.4 shows some

images associated to viewpoint 0 with the cost line for a same voxel position. The

x and y position of the voxel are the same and the green line represents the depth

range. The red dots are depth position at level 3 (8 dots). Figure 5.5a zooms to

image 9 of the set and we can see the depth 0 at the blue dot. Figure 5.5 on page 38

shows the red, green, blue, and black and white2 intensity of the cost line of image

9. Figure 5.6 on page 39 shows the black and white intensity with color mapping to

the depth line. The color is also filling the graph. This color mapping will be used

in the following figures.

2 Conversion to black and white is done like this: bw = 0.21 ∗R + 0.72 ∗G + 0.07 ∗B
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Figure 5.4: Projection of the same cost line on multiple images of the viewpoint.



38

(a) Image 9 of previous image set (figure 5.4).
The depth 0 starts at the blue point and
increase toward the left.

(b) black and white, red, green, and blue intensity along depth line.

Figure 5.5: Cost along depth line for image 9
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Figure 5.6: Cost line on image with color mapping.

Figure 5.7a shows the first 10 cameras of the sets drawn on the same graphics. It

is interesting to note that there seems to be a convergence around depth position 260.

Figure 5.7b also shows the intensity but for all cameras of the sets. In that case, no

convergence seems to happen and this is due to the noise induced by the occlusions.
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(a) Costs of the first 10 cameras plotted together.

(b) Cost of all the cameras associated to viewpoint 0.

Figure 5.7: Cost for multiple cameras
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Figure 5.8a demonstrates more clearly the convergence around position 260. Figure

5.8b shows the min max graph for all cameras.

Figure 5.9a and figure 5.9b clearly show the range of intensity.

Figure 5.10a shows the mean of the cost line in red as well as the normalized

variance in blue for the first 10 cameras. Figure 5.10b shows the same thing but for

all cameras of the viewpoint’s set.

5.7 Quality factor in cost

Looking at image 5.10a we could find a minimum value at the depth position 258.

But it is impossible to do that on figure 5.10b. The solution is to change the cost

function and to use the quality factor seen in section 4.1. The idea is to reduce the

costs using the angle between the camera vector and the virtual camera vector. The

weight of the camera is further amplified (or reduced) by modifying the quality factor

with a constant exponent.

cost =
nb∑

cam=2

V ariance(1 ... cam) ∗ QualityFactor3cam (5.5)

The quality driven cost function from equation 5.5 uses all the cameras of the

viewpoint and calculates the variance for subsets of these cameras. These subsets are

modified by the quality factor (the camera angle) and summed together. The quality

factor is modified with an exponent of 3. A value of 3 is chosen because it makes the

quality factor non-linear and it will increase the cost when the angle is high. This

new cost evaluation provides better results when using all the cameras as can be seen

in figures 5.11, 5.12, and 5.13.

The depth retrieved by looking at the minimum value is relatively stable as long

as the number of cameras is greater than 2 as can be seen in table 5.1.
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Nb Cameras depth
2 45
3 257
4..12 258
13 259
14..20 258

Table 5.1: Depth found per number of cameras in subset
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(a) Min max range of costs for the first 10 cameras.

(b) Min max range of costs for the first 10 cameras.

Figure 5.8: Minimum and maximum costs along depth line
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(a) Min max range of costs for the first 10 cameras.

(b) Min max range of costs for the first 10 cameras.

Figure 5.9: Range of costs along depth line
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(a) Variance for 10 cameras.

(b) Variance for all cameras.

Figure 5.10: Cost along depth line (without quality factor)
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Figure 5.11: Quality pondered cost function (2 to 6 cameras). The minimum value
is located at the correct depth(258).
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Figure 5.12: Quality pondered cost function (8 to 12 cameras). The minimum value
is located at the correct depth(258).
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Figure 5.13: Quality pondered cost function (14 to 18 cameras). The minimum value
is located at the correct depth(258).
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Figures 5.14 and 5.15 demonstrate the model at level 8 retrieved only using the

cost function and without any smoothing. We can see some noise in the depth

which impacts the quality of the reconstructed model. Nevertheless, the model is

still looking good.

Figure 5.14: Carving with pondered cost (no smoothing).
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Figure 5.15: Carving with pondered cost (no smoothing) another point of view.
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Figure 5.16 shows what would be the 3D model if the preliminary visual hull step

was not used. We can hardly recognize the object.

Figure 5.16: Carving with cost only without visual hull.



Chapter 6

SEMI-GLOBAL MATCHING

Once a cost function is available, we need to find good matches and eliminates

bad matches. A wide variety of methods is available for this, from Winner-take-all

[17] to slower global method like graph-cuts [18],[7]. A good candidate is the semi-

global matching method [1] which is considered one of the best algorithm for stereo.

In this chapter we will see the way the semi-global matching method is adapted to

find good matches and help in the reconstruction of a virtual 3D model based on a

virtual camera reference frame.

6.1 Semi Global Method

The algorithm from Hirschmuller [1] and its newer more efficient version [19] performs

smoothing on a cost cube by adding a value to the cost when a disparities change

occurs. This disparity smoothing helps the cost function when there is noise and/or

occlusion. SGM encourages a surface to be continuous by adding a 0 value to the cost

when the depth does not change, adding a small value P1 when the depth changes by

one pixel and, finally adding a larger value P2 when the depth changes by more than

1. This happens when there is a depth discontinuity. Equation 6.1 shows how a SGM

penalty is added to the cost. Since the viewpoint is not necessarily fronto-parallel

to a surface, the penalty P1 must be small. Penalty P2 is added when there is a

discontinuity so it must be bigger than P1.

The semi-global matching cost function, which can be solved using dynamic

programming is:
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Lr(p, d) = C(p, d)+

min(Lr(p− r, d),

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1 (6.1)

min
i
Lr(p− r, i) + P2)−

min
k

(p− r, k))

SGM is applied to every surface on every viewpoint. A contribution is done by a

modification to the SGM method where in the original algorithm P2 is dynamically

adapted to take the intensity of the image into account but when working with virtual

cameras, P2 cannot be adapted since no information of intensity is directly available

on the viewpoint (it is a virtual camera) so P2 has a fix value.

Another modification done to the SGM algorithm is when the previous pixel is

empty for all disparity along the dynamic programming line. This can be seen in

figure 5.14 on page 49 when a previous pixel is between the pillars and the current

pixel is on the pillar border. In this case, the modified SGM will not try to add a

penalty to the cost since none of the disparity of the previous pixel offers a surface.

SGM will perform a modification of the cost values that will result in a smoothing.

This processing is performed along 8 or 16 lines, as shown on figure 6.1. The cost

results from all these lines is added and the minimum values will form a surface used

for carving the octree.

The SGM method works efficiently compared to method like Maximum flow which

works globally [18] because SGM relies on dynamic programming which is efficient to

compute. Dynamic programming is used in SGM when calculating the cost along a

line; the previous values are kept and used for current cost values. Also, SGM is able
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Figure 6.1: Aggregation of costs in disparity space. (Image from [1])

to work on sub-section also referred to as cells.

6.2 SGM by cells

SGM requires a lot of memory when working on a complete surface with a significant

disparity range. It is also not trivial to prevent SGM from using CPU on areas that

we know upfront are empty. The empty areas are generated by the convex hull step

or by another viewpoint that has already carved the octree. One solution to this is to

work on the surface by section. Figure 6.2 shows the subdivision done at the octree

level 3 for viewpoint #2.

SGM will be performed on all cells that are not empty. SGM will calculate a

smoothed cost from the base cost calculated by the method described in section 5.6

on page 36.

6.3 SGM results

To illustrate the usefulness of the convex hull, figure 6.3 shows 2 images where the

convex hull step was not executed. We can see that when there is an ambiguous

background (uniform color) the reconstruction using SGM has some problems figuring

the correct depth. But on the textured area SGM does a pretty good job at reaching
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Figure 6.2: Division of model in multiple sections.

the surface.

Figures 6.4 and 6.5 illustrates the usefulness of SGM. If you look at the vertical

walls you will see that the cost only reconstruction is noisier than the SGM reconstruction.

The stairs are also more defined and less noisy.



56

(a)

(b)

Figure 6.3: Carving with SGM and without visual hull.
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(a) 3D reconstruction with cost only

(b) 3D reconstruction with SGM

Figure 6.4: cost only reconstruction vs SGM reconstruction.
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(a) 3D reconstruction with cost only

(b) 3D reconstruction with SGM

Figure 6.5: cost only reconstruction vs SGM reconstruction.



Chapter 7

IMPLEMENTATION

This chapter gives some details about the application developed during this thesis.

7.1 Application overview

An application called mview was developed for this master thesis and it was used to

visualize the surfaces computed from a set of images. Figure 7.1 shows a snapshot of

the application.

Figure 7.1: mview application.
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7.2 Open source components

Multiple open source components were used in this application:

• cmake 2.8.12 (http://www.cmake.org/)

• opencv 2.4.8 (http://opencv.org/)

• Open Scene Graph 3.3.0 (http://www.openscenegraph.org/)

• Qt 5 (http://www.qt.io/)

• Intel threading building block (tbb) 4.2 (https://www.threadingbuildingblocks.org/)

• eigen 3.2.4 (http://eigen.tuxfamily.org/)

• google glog (https://code.google.com/p/google-glog/)

• ceres solver (http://ceres-solver.org/)

• Qt creator (http://www.qt.io/ide/)

• google test (https://code.google.com/p/googletest/)

The application was targeted for a x64 cpu. A target of 64 bits, as opposed

to 32 bits, was used because the memory usage could go higher than 4 Gigs. The

application was written in C++11.

7.3 Scripting capability

The initial usage of the application was to interactively process a selected set of

images, but as the application improved a scripting capability was added to the

program. This allowed to have a listing of tasks to execute specified in a text file.

The scripting capability are simple, here is an example:
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c l e a r ;

boundbox ( 0 . 0 , 0 .00189 , 0 . 0 , 0 .10822 , −0.05784 , 0 .06249 ) ;

d i r e c t o r y ;

s e t i m a g e f i l e ( ” dinoRing \\dinoR par . txt ” ) ;

theta (0 , 1 .570796326 , 3 .1415926 , 4 .7123889 ) ;

convexhul l ( 0 . 09 , 20 ) ;

sgm( 0 .00005 , 0 .02 ) ;

7.4 Multi-threading

The application uses Intel TBB for multi-threading. It mostly relies on the parallel-for

command has can be seen in the following code snippet:

tbb : : p a r a l l e l f o r ( b locked range<int >(0 , voxs ide ) ,

[& ] ( const blocked range<int>& r ) {

for ( int x = r . begin ( ) ; x != r . end ( ) ; ++x )

for ( int y = 0 ; y < voxs ide ; y++)

for ( int z = 0 ; z < voxs ide ; z++) {

int vxlndx = voxelndx ( m maxlevel , x , y , z ) ;

Eigen : : Vector4d pw = getWorldPos i t ion ( m maxlevel ,

m viewpointsvec [ 0 ] , x , y , z ) ;

i f (pw [ 0 ] < m boundbox [ 0 ] [ 0 ] | | pw [ 0 ] > m boundbox [ 0 ] [ 1 ] | |

pw [ 1 ] < m boundbox [ 1 ] [ 0 ] | | pw [ 1 ] > m boundbox [ 1 ] [ 1 ] | |

pw [ 2 ] < m boundbox [ 2 ] [ 0 ] | | pw [ 2 ] > m boundbox [ 2 ] [ 1 ] ) {

m octree [ vxlndx ] = VOXEL EMPTY;

}

}

} ) ;
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Intel TBB was selected because of the pipeline functionality it offers. This especially

useful when multiple functions need to be processed when after another. Figure7.2

shows the utilisation of the cpus while rendering the 3D model. It takes 309 seconds

to process the complete 3D model at maximum voxel resolution on the temple ring

data set which is composed of 47 images.

Figure 7.2: 100% Cpu usage on a 8 cpu machines



Chapter 8

RESULTS

We tested on the Middlebury multi-view dataset1 on the dino and temple ring

datasets. The evaluation of the results was subjective and was done using a mesh

viewer [20]. It was subjective because the dataset used did not have a ground truth2.

Figure 8.1 shows some results obtained from the 48 images of the Middlebury’s

dino ring dataset. Figure 8.1c and figure 8.1d have been generated with parameters

p1 equal to 0.0005 and p2 equal to 0.05. Figure 8.2 shows a comparison with other

results.

Figure 8.3 shows some results obtained from the 48 images of the Middlebury’s

temple ring dataset. Figure 8.3c and figure 8.3d have been generated with parameters

p1 equal to 0.001 and p2 equal to 0.011. Figure 8.4 shows temple results for multiple

levels (resolution). Figure 8.5 shows a comparison with other results. Figure 8.6

shows multiple views of temple at level 8.

1 http://vision.middlebury.edu/mview/data/

2 While this is not a precise measurement, it is the method that gives the best results as far as
human appreciation is concern. The idea is the same when evaluating video compression codecs
where a simple PSNR does not tell much, even with a low PSNR the compressed video can still
be unappealing compared to another stream with an higher PSNR value
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(a) Original image (b) Convex hull

(c) View of dino after sgm (p1=0.0005 and
p2=0.05)

(d) View of dino after sgm (p1=0.0005 and
p2=0.05)

Figure 8.1: Results on Dino
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(a) Result from Li[6] (b) Result from Sormann[7]

(c) Result from Schroers[21] (d) View of Dino after sgm

Figure 8.2: Dino result comparisons
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(a) Original image (b) Convex hull

(c) View of temple after sgm at level 9
(p1=0.001 and p2=0.011)

(d) View of temple after sgm at level 8
(p1=0.001 and p2=0.011)

Figure 8.3: Results on temple
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(a) Temple at level 5 (b) Temple at level 6

(c) Temple at level 7 (d) Temple at level 8

Figure 8.4: Temple results at various level
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(a) Results from Li (b) Results from Sormann

(c) Results from Schroers (d) View of temple after sgm

Figure 8.5: Comparisons on temple
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(a) (b)

(c) (d)

Figure 8.6: Results at level 8



Chapter 9

CONCLUSION

Three-dimensional multi-view aims at reconstructing a complete 3D object from

the images and cameras information alone. The goal is to find all the surfaces around

the 3D object. This is not a simple task because many factors influence this process.

The occlusions, the noise in the images, the calibration, the errors in the calculation,

and the stitching of surfaces all contribute to render this task quite complex.

The method proposed in this thesis is based on a global reference system on

which virtual cameras are positioned at pre-defined viewpoints around the 3D object.

A hierarchical voxel-construct, based on this global reference system, is used to

reconstruct the 3D model. This voxel-construct is using an octree structure and is

initialised using a convex hull. One surface is created on each virtual camera and these

surfaces are used to carve the voxel-construct. The surfaces are created based on a cost

function that uses multiple cameras per viewpoint. The cost function is made robust

by using the angle of the real camera with the virtual camera (viewpoint). This angle

is also used to penalize the images containing occluded sections. Finally a smoothing

step is used to reduce the effect of noise and errors on the surface using a modified

version of semi-global matching. This smoothing step also bring some improvements

by using the voxel-construct to prevent surface creation in empty section.

The work in this thesis was done in C++ using openCV [22] for image processing

and Intel TBB [23] for the multi-threading framework. Because all the steps involve

in the 3D model creation are easily parallelizable, the program was highly scalable

and was using all the available cpus at full capacity. The method also provides a way

to reduce the cpu usage by working with a hierarchical model where empty areas can

be detected at a lower resolution and left alone for higher resolution processing.



71

While providing a subjectively good model, there are still some issues with noises,

scene composition, calibration errors and occlusions that affect the precision of the

3D model. The uniform background caused some problems with the image matching.

The computation of a convex hull was required to address this.

Future work

From the Octree-construct, a logical next step would be to use marching-cube [24] to

smooth the surface of the reconstructed 3D object. Also, using a dataset that provides

a ground truth would help to obtain a quantitive evaluation of our reconstruction

method.

An interesting avenue would be to use machine learning (deep neural network or

a random forest like the one use on the Kinect [25]) to decide where the depth is on

the surfaces.

Other interesting extension would be to support transparency and reflections,

which would require the algorithm to be more flexible.
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Appendix A

BACKGROUND SEGMENTATION

Background segmentation is the process of creating a mask of the image. The

mask represents the background area. It has the same dimensions as the image but

with a value of 0 for a pixel detected as being part of the background and a value

of 1 for the pixels detected as being part of the object. Background segmentation

is especially important when the image background is a uniform color since, this

uniformity interferes with the matching process. This mask will be used to carve a

visual hull as seen in section 3.8.

Figure A.1a is a base image without any modification. On figure A.1b, the

intensity of the red, green, and blue channel are added together to form a black

and white image. Looking at the normalised histogram of this summed image, on

figure A.1c, we see that a lot of pixels are in the lower bin and this is where the

background will be thresholded. So based on the histogram a threshold value of 0.12

was selected and used in the figure demonstrated here. Figure A.1d shows the mask

with the threshold applied. This mask is not perfect because the inner part of the

object are not selected. This is why we need to apply a morphological operation

(closing) before thresholding.

Figure A.2a is the summed-image with a rectangular morphological filter applied.

The morphological operator fills the inner hole, which is what we want. The result

of the morphological operator is perfect because the mask is not smaller than the

original image. It is very important that the visual hull created from the masks be

equal or bigger than the actual object. The depth retrieved after SGM will further

refine the 3D volume. Figure A.2b demonstrates the final results of a mask generated

for the image in figure A.1a.
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(a) base image (b) image created by summing all 3 channels
R,G,B

(c) histogram of the normalized sum (d) simple threshold on sum

Figure A.1: Background segmentation
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(a) Morphological closing operator applied (b) Threshold on morpho-image

Figure A.2: Morphological operator



Appendix B

OCTREE

This appendix presents how to access an octree of size β × β × β. Assuming a

0 based position where the position starts at 0 and ends at β − 1 in each dimension.

A voxel at position (l, x, y, z), where l is the level, will be composed of the following

voxels:

• position (l + 1, x ∗ 2, y ∗ 2, z ∗ 2)

• position (l + 1, x ∗ 2 + 1, y ∗ 2, z ∗ 2)

• position (l + 1, x ∗ 2, y ∗ 2 + 1, z ∗ 2)

• position (l + 1, x ∗ 2 + 1, y ∗ 2 + 1, z ∗ 2)

• position (l + 1, x ∗ 2, y ∗ 2, z ∗ 2 + 1)

• position (l + 1, x ∗ 2 + 1, y ∗ 2, z ∗ 2 + 1)

• position (l + 1, x ∗ 2, y ∗ 2 + 1, z ∗ 2 + 1)

• position (l + 1, x ∗ 2 + 1, y ∗ 2 + 1, z ∗ 2 + 1)

As an example, the voxel of level 3 at position (3, 1, 4, 0) will be composed of the

voxels of level 4: (4,2,8,0), (4,3,8,0), (4,2,9,0), (4,3,9,0), (4,2,8,1), (4,3,8,1), (4,2,9,1),

(4,3,9,1).

It is possible to retrieve the voxel at a level l − 1 by using the position

(l − 1, x/2, y/2, z/2).
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For example, a voxel at position (4,3,9,0) will refer to the voxel at position

(3, 1, 4, 0).

Since the octree is a hierarchical construct we must ensure that it remains

consistent between levels. When a voxel value is changed, a percolation operation is

required to update every parent of the voxel. This operation is very efficient because

the number of level is O(log β).


