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Abstract

This paper addresses the stereo correspondence
problem where the images are large enough to make
stereo matching difficult. In order to reduce the
problem size, we propose a new non-uniform hier-
archical scheme with the ability to handle different
coarseness levels simultaneously. Our framework,
based on a maximum flow formulation, allows a
much better localization of object boundaries where
large depth discontinuities are present. The uni-
form decomposition fails to localize precisely such
borders because it makes the assumption that sur-
faces are smooth in order to correct the errors from
one coarseness level to the next. Our disparity esti-
mation accurately localizes large depth discontinu-
ities and then focus on increasing the resolution of
smooth surfaces. Results on synthetic and real im-
ages demonstrate the validity of our framework.

1 Introduction

Modern digital cameras can generate images so
large that many of the traditional pixel based stereo
algorithms cannot process them. In a recent com-
parative study of such algorithms by Scharstein and
Szeliski[1] the images were reduced by a factor of
16 in order to make them usable by all the tested
algorithms. Hierarchical approaches have been in-
troduced to deal with those high resolution images
[2-10]. In those schemes multiple levels of image
reduction are used to reduce the search space. Un-
fortunately, some matching errors made in an early
stage can never be repaired in the following steps.
Those errors appear mostly near objects boundaries.
In order to minimize the error, we must provide a
mechanism that can automatically compensate for
errors introduced at lower resolutions.

Many approaches have been proposed to cope

with errors induced by pyramids. In the context of
terrain model reconstruction, Hung et al. [11] sug-
gested using edges detection to help correct errors.
Lotti and Giraudon [12, 13] proposed a pyramidal
scheme based on cross-correlation where edge de-
tection is used to determine the size of the cor-
relation window. Park and Inoue [14] used an
occlusion-overcoming strategy based on the use of
5 cameras coupled with a hierarchical scheme to
achieve precise localization of object boundaries.
The coarse-to-fine hierarchical schemes presented
in [11,12,14] all use a uniform grid decomposi-
tion making them vulnerable to error propagation.
Szeliski and Shum [15], in the context of optical
flow, used a quadtree decomposition of the dispar-
ity map with a splitting criteria based on normal
flow. The motion map is then obtained using the
pre-computed pixel grid. Falkenhagen [16] used a
standard pyramidal scheme and extends the search
interval where large disparity variations are present.
Leloglu et al. [17] also uses a standard pyramidal
scheme where error propagation is limited by using
a sphere around each match in the search volume.
The search is then limited in the region covered by
the different spheres. In [4,7] a complex discrete
wavelet transform is used to improve the matching
cost function at each pyramid level. Nevertheless,
these methods are very sensitive to errors that occur
at the coarsest levels. Alvarez et al.[18] used a hier-
archical scheme to speed up the convergence of an
energy function minimization.

In this paper, we propose a new and more flexi-
ble hierarchical stereo algorithm that features a non-
uniform spatial resolution, so levels of refinement
can be applied selectively where they are needed
most in order to preserve a good localization of
objects boundaries. Our pyramid approach relies
on the maximum-flow formulation of the match-
ing problem [19] which allows an arbitrary non-
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Figure 1: The stereo matching space. The (z, y) plane is
the disparity map with blocks of size Bs. The d axis is the
disparity to assign over a range D, and disparity step Ds.

uniform pixels grid decomposition, independently
of the epipolar constraint. This concept is simi-
lar to the rectangle presented by Sun [5] where
sub-images with low varying disparity are indepen-
dently matched using dynamic programming which
restricts the non-uniformity to be along epipolar
line and does not allow smoothing between succes-
sive epipolar lines. Furthermore, the non-uniform
grid decomposition in [5] is only used to speed up
computation and not to reduce error propagation.
Mancini and Konrad [20] introduced a quadtree de-
composition similar to our scheme. Their criteria
to split a pixel block is based on the value of the
matching cost function and does not model depth
discontinuities explicitly. Sethuraman et al. [21,
22] proposed another quadtree decomposition of the
disparity map in the context of stereoscopic image
compression. The criteria to split a pixel block is
based on the variation of disparity in the 4 inner
blocks and does not consider neighborhood blocks
as our method suggest. Their scheme is aimed at
low bit transmission of stereo pairs and does not
provide large and highly detailed disparity maps.

The concept of non-uniform pyramid will be de-
scribed in Section 2, then the complete pyramid al-
gorithm will be presented in Section 3. Experimen-
tal results will follow in Section 4.

2 Non-Uniform Pyramid

When working with large images the size of the so-
lution space is so huge that the problem becomes
untracable. The problem space is illustrated in Fig-
ure 1. The z and y axis represent the disparity map
itself, while the d axis represents the disparity as-
sociated to each (z,y) pixel of the disparity map.
Since the resolution of the disparity map does not
necessarily correspond to the original image reso-
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Figure 2: Classical pyramid approach. From one level to
the next, notice an increase in spatial and disparity resolu-
tion combined to a reduction of the disparity range.

lution, each disparity map pixel is in fact a block
of size B, (along each of its sides, assuming it is
square) in image pixels (see Figure 1). The same
goes for each disparity value, where going from one
disparity value to the next corresponds to a step of
D, pixels in the original image. Also, the disparity
values have a range D, that describes the extent of
displacement allowed for each block (x,y) of the
disparity map. The goal is to assign for each (z, y)
block of the disparity map a disparity d by searching
all possible disparities in the range D, using steps
of D, pixels. In order to solve very large problem
instances, many algorithms use a pyramid approach
where reduced versions of the problem space are
successively solved at increasing resolutions while
keeping the search space at a reasonable size [2—
5,11, 23].

Those classical pyramid algorithms generally
start by applying a large reduction of both spatial
and disparity resolutions (see Figure 2, level 0). Af-
ter a first solution is obtained using a full dispar-
ity range (absolute phase), it gradually increases the
spatial and disparity resolutions while reducing the
disparity range to keep the problem size under con-
trol (relative phase;see Figure 2, levels 1 and 2). At
various pyramid levels, it is expected that the com-
puted disparity map will differ from the true dispar-
ity map. We classify the errors in two types.

The first type is smooth surface errors, which
are induced by the reduced resolution of the search
space. The reductions used by classical pyramid ap-
proaches are set up to compensate for smooth sur-
face errors from the previous level. Those errors
are progressively eliminated as the resolution is in-
creased from one pyramid level to the next. For ex-
ample, it is assumed that for a disparity step of 8
pixels, the disparity solution are within +8 pixels
of the true disparity. The errors can be removed by
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Figure 3: Non-uniform spatial reduction. Each grid is
shown with superimposed neighborhood graph (Gg;q).
On the right, the resulting non-uniform problem space

(Ggrid X Gdisp)-

setting the range of the next step to 8 around this
solution while the disparity step is decreased to 4
pixels. For the purpose of this algorithm, we de-
fine a smooth surface as one that features disparity
discontinuities smaller or equal to the disparity step
D, used at a given pyramid level.

The second type is large discontinuity errors
which occur when the true disparity solution lies
outside a disparity range that does not cover the full
extent of allowed disparities, as in Figure 2 levels
1 and 2. Errors of this type cannot be recovered
in a classical pyramid approach and are propagated
through the next levels unaltered. Large depth dis-
continuities are typically observed at object bound-
aries. At such boundary, the disparity error can be
as large as the full disparity range. This kind of er-
ror can occur at any pyramid level, but is much more
prevalent when going from a full disparity range to
a reduced one.

The non-uniform framewor k

In order to better localize object boundaries, we
propose to increase non-uniformly the spatial res-
olution only where it is needed, that is where large
discontinuities are occurring. This reduction allows
to run a problem again with the same disparity range
with a negligible increase in problem size, making it
possible to reduce or remove the large discontinuity
localization errors.

A non-uniform reduction consists in applying a
reduction to only a selected subset of the problem
space. The case where only spatial resolution is af-
fected is of particular interest for solving large dis-
continuity errors. As illustrated in Figure 3, some
blocks (here the one in the center) are selected and
then exploded into 4 new smaller blocks.

The fact that blocks of many different sizes can
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be present in a single level of the pyramid creates
new requirements on the problem space represen-
tation and the algorithm used for solving it. The
following sections describe these issues in detail.

A Graph formulation

When solving for a disparity map over some prob-
lem space, most algorithms try to apply some form
of smoothing constraint between neighboring pixels
of the disparity map [19, 24]. This is usually applied
as direct search with a large correlation window
[25], dynamic programming [26], or maximum-
flow [19, 27]. The maximum-flow method with lin-
ear penalty costs [19] can be easily adapted to a
non-uniform disparity grid by simply changing the
topology of the flow graph. It allows to solve effi-
ciently the whole disparity map in a single global
minimization and featured a very flexible neighbor-
hood representation.

The graph G is defined, as in [19], as the prod-
uct G = Gyriq X Gaisp OF two basic graph, Ggriq
expressing the disparity map, and Gg;sp €Xpressing
the disparity range. In the graph Gg,;q4, each dis-
parity map block is a node and is connected by a
smoothness edge to neighboring blocks. We con-
sider two blocks to be neighbors when they have
an adjacent face, regardless of their size. Figure 3
illustrates the graph Ggr;q as it undergoes a non-
uniform transformation. The black points are nodes
and the lines joining them are smoothness edges.
Usually, a global smoothness flow capacity is given
to all smoothness edges of the graph. Due to the ir-
regular nature of neighborhoods, each smoothness
edge is now defined as a common smoothness flow
capacity multiplied by the size of the shared side
of the neighboring blocks. In Figure 3, this is il-
lustrated by the thicker lines linking large blocks
and thinner lines linking a small block to its neigh-
bor since they share a smaller common edge than
two large blocks. This use of weighted smooth-
ness allows the enforcement of a uniform degree
of smoothness across a mixture of blocks of arbi-
trary sizes. The disparity graph Ga:sp is the same
as in the regular grid case. It spans the full disparity
range as a chain of nodes, one for every disparity
step Ds. However, the final graph G will be sparse
since only a fraction of the full disparity range will
remain after the solution is computed.

This section has presented how a non-uniform
pyramid level can be represented as a graph and



solved using a maximum-flow algorithm. The se-
quence of reductions used to generate all the pyra-
mid levels is described in the following section.

3 Thealgorithm

All pyramid algorithms must start with an absolute
phase where they solve over the full disparity range,
and then proceed with a relative phase where they
gradually reduce the disparity range until it reaches
the desired resolution, usually one pixel.

Table 1 illustrates our non-uniform pyramid al-
gorithm. As introduced in Figure 1, we define Bs
as the smallest block size present in the problem
space, D; as the disparity step size used, and D,
the disparity range. For the purpose of expressing
the range, [dmin - . - dmas] represents the full ab-
solute range of allowed disparity while S + d rep-
resents a range of plus or minus d pixels relative
to a previous disparity solution S. A particular re-
duced problem instance P is describes by the vec-
tor P* = (B:, D¢, D?).

The classical algorithm solves the smallest prob-
lem instance over the full range of disparity. It then
proceeds to gradually refine the solution while re-
ducing the disparity range. The non-uniform al-
gorithm proceeds similarly but contains extra steps
which are shown in Table 1 and described next.

Absolute phase

The first phase (steps 1, 2, 2a, 2b) is labeled ab-
solute because it searches for a match over the full
disparity range at a fixed disparity step size. De-
signed to reduce the localization error of large depth
discontinuities, it proceeds by gradually increasing
the spatial resolution (step 2a), but only where large
variations of disparity are observed. This is accom-
plished by selectively splitting cells that are signifi-
cantly different in disparity from their neighbors.

After splitting, a new disparity map is re-
computed using the same disparity range (D,) and
disparity step size (D;). This process is repeated
(step 2b) until the cells size can reach a single pixel
in size (Bs = 1), thereby matching the original im-
age resolution and allowing object contours to be
accurate down to a single pixel.

A disparity difference is considered significant
when it is larger than an user defined threshold T'. If
T is too small then it could have a significant impact
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Create coarsest pyramid level
PO = (Bga Dg, [dmzn s dmam])
where B? and D? are based
on memory and time constraints
Select a threshold T for discontinuities
Set 2 = 0, then Solve
problem Py to obtain solution Sp
Setup next pyramid level
P11 = (3B, Di, D)
(augment non-uniformly spatial resolution
at discontinuities > 7' in S;)
Set s =47+ 1, then Solve
problem P; to obtain solution S;
If BY > 1 then Repeat step 2a

Setup next pyramid level
if D is the Full Absolute Range then
Pip1=(1,3Di,S"+T)
(augment non-uniformly spatial resolution
at discontinuities < 7" in sol .S;,
augment disparity resolution uniformly,
reduce relative disparity range)
else
Py =(1, %Diasi + D;)
(augment non-uniformly spatial resolution
at discontinuities < D in sol S;,
augment disparity resolution uniformly,
reduce relative disparity range)
Set 4 =i+ 1, then Solve
problem P; to obtain solution S;
Setup next pyramid level
P11 = (1, D5, D})
(augment non-uniformly spatial resolution
at discontinuities > DZ in sol S;,
no change to disparity resolution and range)
Set i =7+ 1, then Solve
problem P; to obtain solution S;
If D% > 1 then Repeat steps 3 and 3a

2a

2b

3a

Table 1: Non-uniform pyramid algorithm. The double
line separates the absolute phase (steps 1,2,2a,2b) and the
relative phase (steps 3,3a,4).

on the memory requirement of the absolute phase,
but it would not influence the quality of the final
solution. If T is to big then serious artifacts could
compromise the quality of the final solution. Nev-
ertheless, the choice of an acceptable value is quite
intuitive.

Relative phase

The second phase is designed to reduce the smooth
surface errors and occasional new depth disconti-
nuity errors that may appear. This phase does not
search over the full disparity range. It rather uses
a small range relative to the previous disparity so-



lution (step 3). This allows a dramatic reduction of
the number of disparity steps, making possible the
simultaneous increase of both spatial and disparity
resolutions (thereby decreasing Bs and D,) while
keeping the memory requirement at an acceptable
level. This simultaneous increase is required in or-
der to remove smooth surface errors and explains
why these surfaces are not considered during the
absolute phase.

The use of a relative disparity interval introduces
an important drawback. It makes it impossible for
a disparity to change by a larger amount than the
relative interval used. This is why it is so impor-
tant to remove any large depth discontinuity error
beforehand in the absolute phase.

It is possible that new large depth discontinu-
ities will appear during the relative phase. These
new discontinuities represent new object contours
that may be badly localized and must be improved.
The pixel blocks involved in the new contours will
be split and the disparity map will be re-computed
while keeping the same disparity range D, and dis-
parity step size D, (step 3a).

Atagiven pyramid level during the relative phase
a disparity interval twice as big as the previous dis-
parity step is used. When the algorithm go from ab-
solute to relative phase we exceptionally use a dis-
parity interval D, that is twice as big as the thresh-
old value. Using a smaller interval could intro-
duce serious artifacts by wrongly classifying pixels
blocks.

An example

A synthetic stereo image pair (512 x 512 x
60 disparities), shown in Figure 4, illustrates how
the algorithm is able to recover very good dispar-
ity maps with excellent object boundary localiza-
tion. In this example, 96% of the computed dispar-
ities are within £1 pixel of the ground truth, with
most of the errors in the occluded area on the left
side of the sphere (errors are expected since we do
not model occlusions). The bottom rightmost re-
sult of Figure 4 is from the MRRS method of Sun
[5]. The result of a uniform pyramid scheme using
the maximum-flow formulation is also illustrated to
demonstrate the usefulness of non-uniform decom-
position. With this scheme only 67% of the com-
puted disparities are within +2 pixel of the ground
truth. Like most uniform pyramid methods, both
uniform approach feature large disparity errors at
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Figure 4: Sample reconstruction. At the top, a syn-
thetic stereo pair with large discontinuity at object bound-
ary and the true disparity map. At the bottom, the result of
the non-uniform pyramid (left),the result of uniform pyra-
mid (middle) ,and the result of MRRS classical pyramid

(right).

the object boundaries since it propagates disconti-
nuity errors from each pyramid level to the next.
The steps of the algorithm are illustrated in Fig-
ure 5 for a horizontal slice of the disparity map.
The first six slices (Fig. 5 a-f) represent the absolute
phase, where the spatial resolution is non-uniformly
increased while the disparity resolution and range
remain unchanged. The large discontinuities at the
object boundary are gradually getting accurately lo-
calized, especially on the right side of the sphere.
The left side is not as accurate as the right one since
it is occluded and thereby impossible to match.
The last four steps (Fig. 5 g-j) illustrate the rel-
ative phase where disparity and spatial resolutions
are increased while the disparity range is reduced.
The gradual improvement of the smooth surface
of the sphere is obvious. Notice how the absolute
phase is only concerned with accurate localization
of discontinuities and does not improve the solution
along smooth surfaces. Inversely, the relative phase
can only improve smooth surfaces since large dis-
continuities are outside of its operational range.

Limitations

This paper is aimed at showing the usefulness of
non-uniform grid decomposition in the context of
large and highly detailed disparity map computa-
tion. In this context, we isolate the effect of our
framework by always using a single simple cost
function that does not modeled occlusion. Never-



Figure 5: Algorithm steps for a horizontal slice of im-
age, displayed with ground truth. Vertical axis is disparity,
horizontal axis is = dimension of disparity map. The dots
represent the disparity solutions under consideration.

theless, by post-processing it would be possible to
extract an occlusion map directly from the disparity
map.

Our framework has two potential weaknesses:
First, if the initial pixel block size is too large, a
block containing a large disparity in its middle may
never be split during the absolute phase and thereby
introduce an artifact. Second, if the threshold is too
large, smooth surfaces will be difficult to recover. A
very effective way? of reducing the impact of both
limitations is to repeat step 3a before proceeding to
step 4 in the algorithm of Table 1. At a given pyra-
mid level with a maximum block size of n x n pix-
els, step 3a would be repeated at most log n times.

“We did not use such a strategy in the results presented in this
paper.
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4 Experimental Results

We tested our non-uniform pyramid stereo algo-
rithm on a variety of stereo images. On synthetic
images, such as the results presented in Figure 4 of
Section 2, the algorithm achieved its goal of very
good discontinuity localization and overall quality
of the disparity map. The typical running time, on
a 1.4 Ghz AMD Athlon with non optimized code,
is about 10 seconds for a problem space of 17 mil-
lion (512 x 512 x 64) possible matches. It requires
200 thousand elementary operations ? to complete
while the full size problem is estimated to require
about 100 million elementary operations (the quar-
ter size problem takes about 20 million operations).
The saving of the pyramid approach is quite sub-
stantial. Uniform and non-uniform pyramids have
similar running time, but the quality is much better
in the non-uniform case. The experimental results
on real imagery are presented in the next two sec-
tions. The cost function used in the following sec-
tion is based on simple block matching and SSD.

Teapot

This data-set, courtesy of Jean-Yves Bouguet at In-
tel, features high resolution (2048x1536) images
(see Figure 6) that contains some interesting fea-
tures such as a slanted surfaces with few texture
details, and a large disparity range of 400 pixels.
The ground truth was provided in the form of a 3D
model obtained with a structured light scanner. The
true disparity map is computed from the calibration
data and this 3D model. It itself contains some er-
rors and provides depth only for the teapot itself and
not the table, but still provides a good reference for
comparison.

The full disparity map of the teapot is shown in
Figure 6. The result of dynamic programming [28]
is added for comparison. In general, dynamic pro-
gramming is more sensitive to lack of texture and
suffers from its inability of propagating smoothness
across epipolar lines. The slanted table was well
recovered by our method given its lack of texture.
Most object boundaries are sharp and well local-
ized. Right boundaries are more accurate than left
boundaries because of occlusions, which are not
currently detected.

2\We count the number of Discharge operations in the preflow-
push-relabel algorithm.



Dynamic Programming

N.-U. Pyramid Maxflow

Ground Truth Details of N.-U. Pyramid Maxflow

Figure 6: Teapot disparity map. Middle left, result ob-
tained with dynamic programming [28] . Middle right,
the non-uniform pyramid disparity map. The full disparity
range is [—600 ... — 200] pixels. Bottom left, details of
the true disparity map obtained from a scanned 3D model
of the teapot. Bottom right, details of the non-uniform
pyramid disparity map. The displayed disparity range is
[—460 ... — 350] pixels.

Baseball

The baseball stereo pair, courtesy of Bill Hoff at the
University of Illinois, is shown in Figure 7. It fea-
tures very highly textured surfaces, exposure vari-
ations between the two images, and very sharp ob-
ject contours. The top left disparity map is the re-
sult of a fast pyramid stereo algorithm by C. Sun
[5]. While it runs very fast, this algorithm does not
recover very sharp contour since it does not explic-
itly model them. The bottom results are obtained
respectively with the full size maximum-flow algo-
rithm from Roy [19], the non-uniform maximum-
flow pyramid and the non-uniform maximum-flow
pyramid working in the sub-pixel domain. Both re-
sults from pyramidal maximum-flow are compara-
ble, if not better, than the full size maximum flow
result. Also, as expected, the running time is about
30 times faster with the pyramid.
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5 Conclusion

This paper presented a new non-uniform approach
to hierarchical stereo matching, aimed toward ef-
ficiently matching large images. One objective of
the method is that it detects and accurately localizes
large depth discontinuities typical of object bound-
aries, which is usually hard to accomplish using a
classical pyramid approach.

The algorithm reduces the spatial resolution of
the disparity map non-uniformly so different lev-
els of coarseness can be present at the same time,
thereby drastically improving the results while lim-
iting the memory requirements. It uses a graph
formulation to represent the problem space, thus
enabling the use of the maximum-flow algorithm.
Compared with the non-pyramid Maximum-Flow
approach, our results show good speed improve-
ments and the ability of our method to tackle much
larger problems. It solve efficiently and globally
the matching problem at various hierarchical levels
with arbitrarily complex neighborhood structures
independent of the epipolar constraint. Moreover,
it provides good stability when intensity variation
are present in the stereo pair.

As for future research, are goal is to obtain a
pyramid scheme that can be proved to never propa-
gate errors between successive levels, which corre-
sponds to obtaining the solution of the original non-
pyramid problem.
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