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Abstract

Many applications in computer vision use Principal Components Analysis
(PCA), for example, in camera calibration, stereo, localization and motion
estimation. We present a new and fast PCA-based method to analyze optical
snow. Optical snow is a complex form of visual motion that occurs when
an observer moves through a highly cluttered 3D scene. For this category of
motion field, no spatial or depth coherence can be assumed. Previous meth-
ods for measuring optical snow have used a wedge filter in a spatiotemporal
frequency domain. The PCA method is also based on the spatiotemporal
frequency domain analysis, but examines a different geometry property of
the spectrum. We compare the results of the PCA method to the previous
methods using both real and synthetic sequences.

1 Introduction

Recently, [12] considered a category of visual motion called optical snow which general-
izes optical flow by abandoning classical assumptions of spatial continuity. Optical snow
arises when an observer moves relative to a rigid 3-D cluttered scene or object (falling
snow, forest, plants). Optical snow is characterized by small spatial features and a dense
set of depth discontinuities. It produces a highly discontinuous motion field. Traditional
optical flow methods cannot be expected to recover an image velocity field from optical
snow since these methods typically assume local smoothness in the velocity field [1], or a
small number of well-isolated discontinuities e.g. [19, 20, 3]. By definition, smoothness
constraints do not apply for optical snow. Layered motion models such as [2, 10, 11, 5, 4]
also do not apply, since these models assume smoothness within layers[24], and the num-
ber of layers is typically very small (2 or 3). In optical snow, the number of “layers” can
be in the hundreds or more.

To overcome the dense depth discontinuity problem that arises in measuring optical
snow, [12] introduced an analysis of the motion which was based in the spatio-temporal
frequency domain. [13, 14] presented an algorithm to find the direction of the motion for
the special case of parallel optical snow, which arises for example in the case of a lateral
camera motion [13, 15]. This algorithm was then generalized in [18] to handle the case of
optical snow that arises from general observer motion, including both non-Ilateral motion
and camera roll.



The previous method for measuring optical snow uses a wedge-filter to estimate the
distribution of power in the spatio-temporal Fourier power spectrum. This filter was mo-
tivated by the geometric properties of optical snow in the spatio-temporal frequency do-
main (see Sec. 2). In this paper, we present a new and fast algorithm which uses PCA to
estimate the properties of optical snow. The PCA method is complementary to the wedge
filter method, in that it is based on a geometrical property of the power spectrum that
the wedge method ignores. We show the effectiveness of the PCA method by comparing
experimental results of the PCA method to that of the wedge method of [14].

2 Previouswork

2.1 Optical Snow

Optical snow is produced by an observer moving relative to a rigid 3D cluttered scene. It
is a special case of motion parallax in which the density of depth discontinuities is high.
For motion parallax in general (and optical snow in particular), the image velocity field
can be closely approximated as a sum of two fields — one that is due to camera translation
and the other due to camera rotation [16]. As a result, the image velocity vectors in a local
image patch satisfy the relation

(Vx,Vy) = (Ux+ a tx, Uy+ a ty) (1)

where uy, Uy, ty, ty are constants which depend on the patch and a depends on position X,y
in the patch and on the depth of the point visible at (x,y) [18]. Thus, optical snow yields
a one parameter family of velocities (a line!) in any local image patch.

One can examine the power spectrum properties of optical flow by using Eq. (1) to
extend the classical motion plane property [23, 7]. The motion plane property states that
an image translating with uniform image velocity produces a plane of energy in the 3D
spatio-temporal frequency domain. Formally, let I(x,y,t) be a time varying image which
is defined by an image patch translating with velocity (vx,vy). From [8], this velocity is
constrained by
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This constraint, transposed in the Fourier domain, yields
(Vxfx + vy fy + ft) T(fy, fy, f) = 0 (3)

where I(fy, fy, i) is the Fourier transform of 1(x,y,t). Eq. (3) implies that all frequencies
(fx, fy, ft) for which I(fy, fy, f;) # 0 lie on the plane

Substituting Eq. (1) into Eq. (4) yields a family of planes in the frequency domain,

(ux+at)fx + (uy+aty fy+f) =0



Figure 1: (a) Bowtie signature in the frequency domain. The axis of bowtie is in direction
6. (b) Wedge used to estimate the orientation of the bowtie. The dotted line at angle 6 in
the (fy, fy) is denoted lg.

This set of planes forms a bowtie (see Fig. 1a) and follows the two following proposi-
tions [14]:

Proposition 1: The planes of the bowtie intersect at a common line, called the axis of the
bowtie, that passes through the origin.

Proposition 2: The axis of the bowtie is in direction (—ty,tx, Uxty — uyty) in the 3D fre-
quency domain. By normalizing (ty,ty), this direction becomes (—ty,ty, |U|sin(¢)), where
@ is the angle between vectors (ty,ty) and (ux,uy). By assuming that (ty,ty) is perpendic-

ular to (ux, Uy), we get (—ty, ty, y/ug+uZ ).

For simplicity, all equations in this paper assume image sequences of equal dimension
in space and time, i.e. the size N of image region equals the number T of frames. In
|’3\lractice, the case of unequal dimensions can be easily be accounted for using factors of
! We emphasize that optical snow is a very general model of visual motion. It describes
the velocities of any rigid 3D scene as seen by a moving observer [14, 18]. The model
applies whether the surfaces are partly transparent, smooth, layered, or densely cluttered.
The model does not assume any spatial continuity. This is in sharp contrast to conven-
tional optical flow estimation which relies on spatial coherence of the motion fields or
uses motion layers model.

2.2 Bowtie axis estimation using wedge filter

[12, 14] introduced an algorithm to find the bowtie axis in the case that (ux,uy) = (0,0),
where no rotation is allowed. In this case, the bowtie axis lies in the (fy, fy,0) plane and
the direction of the bowtie axis is (—ty,t,0). To find the bowtie axis, a wedge filter is
used. The wedge filter is defined by two motion planes, of slope +vmax, respectively.
These two planes intersect at a line in the (fy, fy) plane, which is oriented at an an angle
0 (see figure 1). We let lg denote this line. It corresponds exactly to the axis of the bowtie
when 8 = 6. If all motion planes in the bowtie have slopes of magnitude that is less than



Vimax then, for this 6, the intersection of the wedge filter and the bowtie will be restricted
entirely to the bowtie axis.

To find the bowtie axis, the wedge filter is rotated (0 is varied) and the power that
falls within the wedge filter is measured as a function of 6. In particular — and this is an
important detail — a small cylinder containing the line lg is removed from the wedge filter.
This remove all power from the wedge filter for the case that 6 = 6,. The angle 6, of
the bowtie axis is estimated to be the angle for which the power in the wedge filter is a
minimum.

The more general case is that (ux, uy) # (0,0). In this case, the bowtie axis does not
lie in the (fy, fy) plane (see Proposition 2). To estimate the bowtie axis in this case, a
method was presented in [18]. This method has two steps. The first step is to find the best
fit motion plane for the bowtie and then shear the power spectrum in the f; direction to
bring this motion plane in correspondence with the (fy, fy) plane. This shear amounts to
motion compensation [17] of the image sequence (within the patch in question) such that
the mean velocity in the patch becomes 0. In particular, since the bowtie axis is contained
in all mation planes within the bowtie, this best fit plane also contains the bowtie axis.
The second step of the method for finding the bowtie is to find the 0 that best aligns the
wedge filter to the bowtie, as described above for the case that the bowtie axis happens to
already lie in the (fy, fy) plane.

To perform motion compensation, [18] finds the vector (vy, vy) that minimizes the sum
of squares:

g(vx,Vy) = Z | [(fx, fy, fe) [ (fo — (x4 vy fy) mod N))?
fx, Ty, ft

We re-express the motion compensation step, in a way that will allow us to compare it to
the PCA method, which we introduce in this paper.

Let F be the N3 x 3 matrix which lists the N® possible frequency triplets ( fy, fy, f;),
where each fy, fy, f value isin {0,...,N—1}. Let W be an N3 x N2 diagonal matrix of
weights, with diagonal elements,

W (f, fy, i) = [1(f fy, f)l -
Consider the matrix product

zfxzw(fx, fy, ft)z zfx fyw(fx7 fy, ft)z zfx ftW(fx, fy7 ft)z

where each of the summations is a triple summation over fy, fy, f;, namely over the entire
3D frequency domain. In the case that there is no temporal aliasing, the modulus N can
be ignored and the summation is equivalent to

g(VXavy) = (VX,V%_]-) FTW2 F (Vx,Vya _1)T

This method thus finds the best fitting motion plane by minimizing the weighted squared
distance in the f; direction.

With this background, let us now turn to the original contribution of this paper which
is to introduce a new, simpler and faster PCA-method for finding the bowtie axis.



3 Bowtie Axis Estimation with PCA

The basic idea of our PCA method is to find a line in the frequency domain that passes
through the origin and contains a concentration of power. It does so by computing the
eigenvectors of a 3 x 3 covariance matrix which is defined in the (fy, fy, f;) domain. This
strategy is justified by the fact that the energy on the bowtie axis is the superposition of
the energies (not merely the intersection) of the planes that contribute to the bowtie (see
Fig. 2).

The PCA method uses classical orthogonal distance regression [21], which finds the
best fit line and best fit plane to a set of 3D points. In our problem, the 3D space is
the frequency domain and so the coordinates are (fy, fy, ft). The lines and planes we are
interested in pass through the origin. Let

nxfx+nyfy+ n’[f’[ = 0
be the equation of a plane that passes through the origin, where
n" = (ng,Ny,N)

is a vector normal to the plane. We wish to minimize the sum of squared orthogonal
weighted distances of each (fy, fy, ft) to this plane,

1
f(n) = fXnytW(fX, fy, f)2 [nx fx + ny fy + nefe|?.

The function f(n) can be expressed as the matrix product
f(n)=(n" FT W2Fn)/(n"n)

where F is the same matrix as in Sec. 2. We will discuss our choice of W (fy, fy, f;) below.

The function f(n) is a Rayleigh quotient. This quotient is maximized and minimized
by the eigenvectors corresponding to the largest smallest eigenvalues of FTW?2F, respec-
tively. The minimum eigenvector defines the normal of the best fit plane 7. The maximum
eigenvector defines to the best fit line | which is considered to be the bowtie axis. The line
| always lies in the plane 7, since FTW?2F is a symmetric real 3 x 3 matrix and so it has
an orthogonal set of eigenvectors.

3.1 Comparison of the two best fit plane methods

Both the wedge filter method of [14, 18] and our new PCA method compute a mini-
mization which finds a motion plane that best fits a bowtie. However, there are several
differences between the methods.

Let us first briefly mention two minor differences. One is that f(n) measures the
weighted distance orthogonal to a plane, whereas g(v, vy) measures the weighted distance
in the f; direction only. One can make arguments for either of these distance choices.
Indeed similar non-orthogonal [7, 22] vs. orthogonal [6, 9] choices were made in classical
optical flow. A second difference is that the f(n) minimization normalizes by the length
of n, whereas the g(vy,vy) minimization does not normalize by the length of (vy,vy,—1).
The effect of normalizing is to explicitly penalize for high speeds. Again, arguments can
be made for or against.



A more significant difference between the two methods is the choice ofW(fX,Afy, ft).
For wedge filter method [18], the weighting function was the amplitude spectrum | I( fy, fy, f) |.
The amplitude spectrum turns out to be inappropriate for the PCA formulation, however.

To understand how problems can arise, consider an illustrative example. Suppose that
an image sequence is defined by summing two translating image sequences

I(Xayat) = Il(xayat)+|2(xayat) .

The Fourier transform of the summed image sequence is
|A( fX7 fy= ft) = I’i(fX7 fy: f'[) + I’\Z(fXJ fy, f'[)

with power spectrum

| (fx, fy, ft) |2 = | I1(fx, fy, ft)) |2 + | I2( fx, fy, ft)) |2 + 2Re(I1(fy, fy, ft) I2(fy, fy, ft) ).

Let’s consider the expected value. The phases of fl(fx, fy, ft) and fz(fx, fy, ft) can be
assumed independent, so we have

& { I’;I.(fX7 fy; ft) IAZ(&) fy; ft) } =0
and so
E{ |1k fyf) 2} =€ { [Talfefy, f)) P} +6 { | R(f fy, 1)) 17 3

The expected power spectra on the bowtie axis is thus the sum of the expected power
spectrum of the two component image sequences. Thus there is a concentration of power
on the bowtie axis, which is where the two planes superimpose.

Unfortunately, there is no reason why the PCA method should detect this concentra-
tion of power, if we choose W (fy, fy, fi) = | f( fy, fy, ft) | as does the wedge method. To
illustrate, take the counter-example in which the first frame (and hence all frames) of the
two translating images have the same amplitude spectra, | I1(fx, fy) | = | l2(fx, fy) |
but they have independent phase spectra. Further suppose that two translating images
sequences have equal but opposite velocities. Then one can show that two of the eigen-
vectors of FTW2F lie in the plane ( fy, f,) and the third eigenvector is parallel to f;. More-
over, the direction of the two eigenvectors in (fy, fy) depends on only on the amplitude
spectra, | I1(fx, fy) | = | I2(fx, fy) | . These eigenvector directions would be independent
of the direction of image motion. Thus, for this counterexample, the PCA method would
not be able to recover the bowtie axis, even though there is a concentration of power there.
We have done experiments to show that this difficulty arises for more general sequences.
(This data are not included because of space limitations.)

3.2 Finding the bowtie axis

The difficulty that we just described arises because the power spectrum is a second order
property, whereas the concentration of power that occurs on the bowtie axis is a higher
order property. This difficulty is avoided by using a higher order power of the Fourier
coefficients, namely:

W (e, fy, f) = | ( fy, ) 2



Running a similar argument as above on the expected values yields:
& {|W(f fy, fo) 2}
= &{|1(ffy f) [*}
= E{ (It fy, f) P + | a(f fy, f) [F + 2Re( Ia(fx, fy, o) a(Fe, fy, ) ) ) 2}
= E{ | hlfofy ) [ *} +& {1 a(f fy, 7)) [}
+ & {4 (Re(a(fx, fy, ) la(f, fy, f) )23+ & {2 | a(Fe, Fy, )7 | Ta2(fx, fy, o) 17}
+ & { 2Re( I1(fx, Ty, f) Ta(fx, Ty, f1) ) ([2(Fxs Ty, ) | 2+ [2(Fx Ty, ) | 2) } -

The first four terms in the summation are all positive, whereas the last term vanishes, since
Re( I1(fx, fy, ft) I2(fx, fy, ft) ) is equally likely to be positive as negative.

In particular, we observe the desired interaction of the two motion planes along the
bowtie axis. There, the third and fourth terms in the summation are positive since both
IAl(fx, fy, ft) and I}(fx, fy, ft) are simultaeously non-zero and each of the terms involves
squared (and hence positive) quantities only. These terms add a large extra weight to the
minimization, which causes the first eigenvector e; of FT W2 F to align with the bowtie
axis.

f
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Figure 2: (a) Energy distribution in the Fourier domain from a viewpoint perpendicular
to the axis of the bowtie (b) Energy distribution in the Fourier domain from a viewpoint
parallel to the axis of the bowtie (c) Eigenbasis of bowtie signature.

3.3 Results

To evaluate our method we rendered several synthetic image sequences of scenes con-
taining lambertian spheres (see Fig. 3). Image motion was generated by moving a camera
(45 field of view) through the scene with various translation and rotation parameters. For
lateral camera motion (axis of translation and axis of rotation both perpendicular to the
optical axis) and a small field of view, the motion satisfies Eqg. (1) and a bowtie should be
present.

Table 1 shows the results for the PCA method and the wedge detector. Except for
the real sequences in the last two rows, each row shows the average over ten runs of
each method. We report both the error and the standard deviation ¢ of estimated bowtie

parameters 6 and U = , /u2 + u§. We use both synthetic and real scenes to compare the



accuracy of the PCA method to the wedge-based method of [12, 14, 18]. The results
are very similar. Temporal shearing (see Sec. 2.2) is used as a preprocessing step of the
PCA method to account for temporal aliasing. We also perform a power normalization
[7] for each spatial frequency ( fy, fy) to ensure uniform power distribution. Note that the
PCA method is parameter-free. The wedge method needs two parameter, the slope of the
wedge Vimax and the cylinder radius r (see Sec. 2.2). For all sequences, Vimax Was set to 1.0,
except for the holly sequence, where 2.0 was used. A radius r of 4 pixels was used in all
cases. These values are somewhat image dependent, which emphasizes the advantage of
getting rid of parameters.

The average running times for the wedge method was 30 seconds®. Under similar
conditions, the PCA method runs in around 1.5 seconds.

(b)

Figure 3: (a) Synthetic scenes consisted of small balls at a wide range of depths (64 frames
of size 128x128 pixels). (b) Holly bush taken from a horizontally translating camera (32
frames of size 64x64 pixels). (c) Lab sequence taken from a camera translating diagonally
in the image plane (40 frames of 128x128 pixels).

Table 1 : Comparison between the PCA method and the Wedge method

Ground truth PCA method Wedge method
6 | | [er(®)(a(6) | er(u](a(u]) | er(6) (o(8)) | err((U]) (a(lU]))
Q0 0 0.24 (1.51) 0.00 (0.00) 1.16 (4.17) 0.03 (0.02)
90 0 0.58(0.88) 0.01 (0.00) 0.59 (3.63) 0.03(0.05)
0 0 0.33(1.18) 0.00 (0.00) 0.14 (5.00) 0.03(0.03)
135 0 0.08 (1.12) 0.00 (0.00) 0.35(1.85) 0.02 (0.02)
60 0 1.48 (1.30) 0.01 (0.01) 392 (4.13) 0.07 (0.04)
225 | 071 0.93(1.73) 0.02 (0.01) 0.88(1.91) 0.02 (0.01)
Q0 1 2.45(1.16) 0.05 (0.02) 3.13(5.09) 0.06 (0.04)
135 | 141 1.11(2.83) 0.04 (0.01) 0.04 (2.53) 0.04 (0.03)
Real Sequence 0 U] 6 U]
Holly 92.78 0.01 88.95 0.16
Lab 28.58 0.02 26.01 0.05

3.4 Comparing the eigenvalues

Although scenes with a wide range of depths often produce optical snow, there are certain
conditions in which optical snow does not occur. The first example is if the objects are

1The machine was an AMD Athlon 1600MHz.



all distant (a mountain seen by a walking observer) then the translation component of the
image velocities vanishes, since the translation component depends on inverse depth [16].
Second, even if the objects are nearby, if the observer is moving directly forward and
the field of view is small, then the translation component of image motion is small. The
reason is that the translation component varies directly with the angular distance from the
direction of heading. Third, if the camera motion is pure rotation (no translation), then
the image motion field is independent of depth. In all three of these cases, the “bowtie”
in fact consists only of a single motion plane.

When only a single motion plane is present, it is the best fitting plane to the “bowtie”.
This plane mTis spanned by the eigenvectors e; and e,. The eigenvalues would depend on
the spatial orientation structure in the (translating) image, rather than on a bowtie axis.
Moreover, the eigenvalue for the ez direction would be near zero.

With this issue in mind, we would like to estimate how well the analyzed motion
corresponds to optical snow, i.e. if a bowtie is present. We define a bowtie “fitness
measure” by comparing the two largest eigenvalues. There are two extreme cases to
consider. The first is that optical snow is present and there is a wide range of image
speeds. In this case, the first two eigenvalues should correspond to the bowtie axis and
a perpendicular vector in the best fitting plane 1, respectively. The second extreme case
is that a single motion plane is present. Assuming that spatial content of the image is
roughly evenly distributed over all orientations, the two corresponding eigenvalues should
be equal.

Figure 4 shows a plot of the ratio of the first two eigenvalues A, and A; as a function
of the range of depths. As predicted, the ratio falls off as the range of depths decreases.

.
sl

Figure 4: % as a function of depth range (from a single depth to a large interval). As

expected, it Starts at 1 (pure plane) and decreases as a bowtie signature takes shape.

4 Conclusion

We presented a new simple PCA-based method to analyze optical snow. The performance
of the method in estimating the bowtie axis is similar to that of the previous method,
which is based on a wedge filter. As the results demonstrated, the PCA method has many
advantages such as its simplicity, its efficiency and its absence of parameters.
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