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Pierre Poulin
(Professeur)

Max Mignotte
(Professeur)
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RÉSUMÉ

Cette thèse s’intéresse à la reconstruction stéréoscopique dans des environnements

contenant des objets transparents, comme la couronne solaire. Les données pour ce

projet, images stéréoscopiques du soleil, ont été fournies par la NASA grâce à la mis-

sion STEREO. Ce mémoire propose une nouvelle méthode de rectification sphérique

ainsi qu’un nouvel algorithme pour la reconstruction dense sans aucune hypothèse

préalable sur la forme ou la transparence des objets dans la scène.

Premièrement, les paramètres des caméras sont estimés, et une étape de raffine-

ment suit pour obtenir un alignement presque parfait entre les images. Dans l’étape

suivante, les images sont rectifiées pour réduire l’espace de recherche de trois à deux

dimensions. Les densités le long des lignes épipolaires sont ensuite estimées.

La reconstruction des scènes transparentes est encore une problème ouvert et il

n’y a pas de méthodes générales pour résoudre la transparence. Les applications

pour cet algorithme sont nombreuses, comme la reconstruction des traces de fumée

en soufflerie, le design optimal des chambres à combustion, la realité augmentée, etc.

Mots clés: vision par ordinateur, rectification, stéréoscopie, transparence, esti-

mation de profondeurs multiples, soleil, physique solaire



ABSTRACT

This thesis concentrates on the stereoscopic reconstruction of environments con-

taining transparent objects. The data used to test the algorithms is graciously pro-

vided by NASA through the STEREO mission. This thesis proposes a new spherical

rectification technique as well as a dense reconstruction algorithm without making

any prior assumptions on the shape or transparency of objects inside the scene.

Firstly, the camera parameters are estimated, following a refinement step to get

seamless alignment between images. In the next step the images get rectified in order

to be able to restrict the search space to 2D rather than the full 3D. Afterwards the

density at along each epipolar line gets estimated.

The reconstruction of transparent scene is still largely an open problem and there

are no general methods to deal with transparency. The applications of such an algo-

rithm are numerous, ranging from reconstruction of smoke trails inside wind tunnels,

optimal design of combustion chambers, augmented reality, etc.

Keywords: computer vision, rectification, transparency, stereoscopy, multiple

depth estimation, Sun, solar physics
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Chapter 1

INTRODUCTION

The field of machine vision aims at developing algorithms that mimic functions of

the human visual system. Using data from sensors (imaging, range scanners, etc.), the

algorithms are trying to get information about the surrounding physical world. Each

of the sensors observes merely just a “projection” of the real world so this information

must be merged to recover the world coordinates. Out of the machine vision problems,

the one that received most of the attention is 3D reconstruction. Applications are

numerous, ranging from metrology, navigation and adaptive multimedia systems.

In this thesis we attempt to develop a reconstruction scheme for solar coronal

loops using extreme ultraviolet images taken by the STEREO mission, while making

just standard smoothness/sparsity assumptions. For the first time we have simulta-

neous satellite images from two vantage points using identical instruments. Previous

attempts at reconstruction used single vantage point images spaced in time, using

the solar rotation to provide different views of the features.

The STEREO mission will provide an important tool to validate the theoretical

models of magnetic fields and plasma flows on the Sun. The holy grail of solar physics

is the accurate prediction of the space weather, which has a strong influence on our

day to day activities. The coronal loops have a major influence on this phenomena.

The loops on the surface of the Sun sometimes erupt outside the corona and escape the

Sun’s gravity. This creates the aurora Borealis/Australis and disrupts satellites and

radio communications. Prediction of such phenomena relies on accurate 3D models

of such loops, which is the main concern of this thesis.
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There are multiple approaches to the 3D reconstruction problem. The simplest

of which, uses pixel matching techniques along epipolar lines and together with the

projection model, one can triangulate the world 3D position of each pixel. In this

method one chooses a reference view and the resulting reconstruction is from this

point of view. An alternate, but similar method, is volumetric reconstruction. The

reconstruction volume gets discretized into volume elements, and the value at each

voxel is dictated by an average of the pixel values from all views where the voxel

is visible. This can accommodate an arbitrary number of views. Usually a voxel

is either fully transparent or opaque leading to a single depth for a pixel inside the

images. The success of this method is strongly influenced by our occlusion/visibility

modelling.

Another family of methods, used commonly in medical imaging, is the tomographic

reconstruction. Given a large number of projections of the object one can reconstruct

the object with low error. Normally we will settle for a few hundred projections in

order to obtain good results. This method used certain properties of the Fourier

transform of the projections to perform the reconstruction. Usually an orthographic

projection model is assumed.

The current algorithms cannot reconstruct reliably transparent environments un-

less an unreasonable number of input images is used or an a priori knowledge of the

shape of objects is available. We will have to cope with as little as two or three images

(if we use SOHO images as well). The solar loops are short lived phenomena, thus

preventing us from using images taken at different instances of time.

The method proposed in this thesis is a hybrid between the volumetric and to-

mographic reconstructions: like the tomographic reconstruction we are looking for a

certain “matter density” inside each voxel, but the original rectified images are used

directly rather than the Fourier transform of its projection. The problem poses itself

as a constrained minimization problem. The constraints are provided by the avail-

able views together with the corresponding projection models. The function to be



3

Figure 1.1. Coronal loops captured by the TRACE mission 284Å

minimized, provides some kind of regularization, helping us to impose certain prop-

erties of the solution. The problem is massively underconstrained: given a uniform

discretization of n in each dimension, our reconstruction volume has n3 cells (vox-

els ) with O(n2) equations given by the views). This algorithm will be applied on

solar coronal loops captured by STEREO (Fig. 1.1). The problem of transparent

stereo matching is extremely challenging and there exists no current solution which

is satisfactory. Because of this the results presented here are far from perfect.

A secondary contribution of this project is a rectification scheme named spherical

rectification, which has all the good properties of state of the art rectification methods

such as the ability to rectify any camera configuration outputting a finite image size,

but is particularly useful for objects which are on spheres.
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1.1 Outline

The thesis is organized as follows: in chapter 2 we present a brief history of solar

observation, some current open research topics and a bit of physical background

that will be useful in the later parts. In chapter 3 we introduce the standard 3D

reconstruction toolkit. Chapter 4 introduces the fundamentals of rectification as well

as some small results of our own rectification method. In chapter 5 we introduce the

standard methods to reconstruct transparent environments and our proposed method.

Chapter 6 presents some results of our reconstruction with both synthetic and read

data, and in chapter 7 we suggest some future improvements.



Chapter 2

ASTRONOMICAL AND SOLAR IMAGING

The Sun has been a source of fascination for mankind before the dawn of his-

tory. Numerous historical discoveries stand witness that prehistoric people had basic

knowledge of solar system planetary cycles.

It was not until around the year 1600 that the first Earthbound solar telescope was

built by Galileo Galilee. He was the first to observe the solar dark spots. During the

19th century, the German astronomer Heinrich Schwabe observed that the number of

spots increases and decreases with time. He was the first to observe that the period

of this solar activity oscillation is about 11 years.

Probably the greatest contribution to solar observations was brought by George

Ellery Hale in the 20th century. He discovered that the sunspots were cooler than the

surrounding matter, and thus darker (the magnetic field inside the sunspots is strong

enough to prevent convection, so hot matter from the inner Sun cannot reach the

surface). Another important contribution was the observation that every 11 years

the solar magnetic poles get reversed, giving birth to a more fundamental solar cycle

of 22 years[2].

Since the beginning of the space age, the knowledge about the Sun has increased

exponentially. This was powered by both recent theoretical physics and technological

developments. Using airborne/spaceborne observatories has improved the quality of

data by removing the effects of the atmosphere that could corrupt the data. Ob-

servations of certain wavelengths, such as X rays, are impossible inside the Earth’s

atmosphere because of its high absorption rate.

The motivation for the special interest in the Sun is fairly straightforward: it is

our only source of high resolution data of the physical processes inside stars. The
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activity on the Sun has a strong influence on our day to day activities as well, giving

us more pragmatical reasons for its study. High energy particles ejected by the Sun

into outer space - the solar wind - change on a global scale the Earth’s climate,

the most visible effect being Aurora Borealis/Australis. Other bad effects include

disruption of geostationary satellites, pipelines, electrical power grids and increased

levels of radiation. The generation of solar wind follows an extremely complicated

mechanism, not entirely known.

The Sun provides a lot of information about processes that are not easily repli-

cated by man made experiments. In elementary particle and nuclear physics the

benefits were numerous. With the help of solar data, about 30 years ago the neutri-

nos were discovered. Up until the year 2002 there was a major discrepancy between

the predicted and observed neutrino amounts. Finally two new types of neutrinos

have been discovered (with much lower probability of interaction).

The bulk part of the solar energy is generated thorough the CNO cycle (Carbon,

Nitrogen, Oxygen), in which stars convert through fusion Hydrogen into Helium, a

phenomenon which is still not totally understood.

In the field of plasma physics the most important contributions were wave prop-

agation and magnetic field generation.

One of the largely open problems is the coronal heating problem. The solar corona

is the outer most atmosphere. This extends from Rsun to about 2 − 3 solar radii.

The mystery behind the corona pertains to its heating mechanism. It is about 200

times hotter than the photosphere - the next inner layer. The temperature of the

corona rises from 5 000◦K to about 1 000 000◦K within 200 000 Km. There is

still no generally accepted theory regarding the energy transfer mechanisms from the

photosphere to the corona. The two most prevalent theories are the wave transport

theory and the magnetic reconnection theory. The second one has the greater support

and we will base our investigations on it. In short this theory claims that the heating

is due to the magnetically induced electrical currents. When magnetic fields change
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Figure 2.1. The 4 wavelengths captured by STEREO

topology (they merge or divide) a certain amount of energy gets released. In our

project we will try reconstructing these field lines.

Because of the extreme temperature most of the matter is ionized. This is fortu-

nate since this matter will gather around the magnetic field. The equation of motion

for a charged particle inside magnetic field is given by the Lorentz equation:

−→
F = q ·

−→
V ×

−→
B (2.1)

where q is the particle charge, V is its velocity and B is the magnetic field. Since

there is a cross product, the particle will follow a helical motion around the field line.

These particles provide an outline of the magnetic field, otherwise invisible (Fig 1.1).

For more detailed information on solar and stellar phenomena please refer to [3–6].
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2.1 STEREO mission

In December 2006, NASA launched its third Solar Terrestrial Probe called STEREO

(Solar TErrestrial RElations Observatory). The mission consists of two identical

probes orbiting around the Sun, one in front and the other trailing behind the Earth,

providing the first true stereoscopic view of the Sun.

The whole mission was designed to provide data for a period of 5 years with

its main scientific objective being the better understanding of CMEs (Coronal Mass

Ejections). CMEs are important to study since they have a direct impact on our day

to day life. Once they escape the solar gravitational field they turn into solar wind

and can disrupt satellites orbiting Earth, telecommunications, and even the terrestrial

electrical power grids.

The mission carries a broad range of instruments. This project will be using

the instruments contained in the SECCHI package (Sun Earth Connection Coronal

and Heliospheric Investigation). Each satellite contains a EUV (extreme ultra violet)

imager that takes images in the wavelengths of 171, 195, 284 and 304 Å. Since different

emission lines get formed at different temperatures, different images provide insight

at different depths inside the Sun (Fig. 2.1), ranging from Rsun, up to approximately

2Rsun.

The satellites orbit in a heliocentric trajectory (around the Sun), allowing the

satellites to separate more and more as time passes, since one is closer to the Sun

and thus moving faster. The current separation between the satellites is about 25◦

and growing by a rate of about 6◦ per month. The satellites are situated about 109

meters away from the Sun. The field of view of the satellites is around 1.5◦, so the

projection model being close to an orthographic camera model.

The data comes in the FITS format. This is a general purpose format used in Solar

and stellar astronomy, that can handle time series, images, or multidimensional data.

The FITS files also contain a header where one can accomodate ancillary information
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Figure 2.2. Image of the Sun as seen by STEREO-B in the 195Å

about the conditions in which the data was recorded. SECCHI provides its data as

16bit integer 2D images, (Fig. 2.2).

A more detailed mission description can be found in [7, 8].

2.2 Coordinate systems

In order to represent the positions of far astronomical bodies, they are considered as

belonging to a sphere of infinite radius - the celestial sphere. In such a system, the

parallax is virtually zero. The position of objects in such a system is fully determined

by two angle parameters, the right ascension and declination (or galactic latitude

and longitude). This sphere has its center located at the center of the Earth and its

equator in the same plane as Earth’s equator - the celestial equator. In a similar fash-

ion coordinates on the surface of Earth are represented by two coordinates, latitude
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Figure 2.3. Sun seen from the two STEREOs

and longitude.

Since the Sun is close enough and the resolution of the observations permits us

to resolve smaller features, it is crucial to introduce a third coordinate to accurately

describe the phenomena occurring on the Sun. As we will see in the chapter about

camera models (chapter 3), the third coordinate gets lost due to projection onto the

imaging sensor. Because of this, at least two views are needed to recover the whole

3D geometry of phenomena.

Another difficulty in positioning objects onto the Sun is caused by the fact that

there are no stationary points that could serve as reference. The Sun turns at dif-

ferent rates at different latitudes because of centrifugal and magnetic forces. Some

coordinate systems will be rotating with respect to each other, thus it is necessary to

take also time into consideration.

2.2.1 World coordinate systems

Since the STEREO is observing from two very different vantage points it is necessary

to incorporate the instrument viewpoint (3D position) into the coordinate system

(Fig. 2.3).

To be able to pass from 3D world coordinates to pixel coordinates inside images

we need to pass through two levels of coordinate systems. Firstly, the 3D positions
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and orientations of the satellites have to be known (in total 6 parameters, 3 for

translations and 3 for rotations). These are the “external” parameters. After this we

have to establish a set of 2D transformations that map the coordinates of the Sun to

pixel coordinates of the sensors (the “internal” parameters).

In order to represent the 3D world position of the satellites, the FITS headers

provide coordinates in a multitude of coordinate systems. To uniquely define a coor-

dinate system we have to pinpoint its origin as well as choose two axes (the third is

derived from these axes since we assume a right handed coordinate system). We use

heliocentric coordinate systems, so the origin is at the center of the Sun. The most

useful orientations of the axes are:

1. Heliocentric Aries Ecliptic

• X axis points towards the First Point of Aries

• Z axis points towards the ecliptic north pole

2. Heliocentric Earth ecliptic

• X axis points towards the Earth

• Z axis points towards the ecliptic north pole

The ecliptic plane is the plane in which the Earth rotates around the Sun. The

ecliptic north pole direction is perpendicular to the ecliptic plane.

The first point of Aries, Fig 2.4, is the point in space where galactic longitude is

considered 0. This is one of the points where the celestial (Earth’s) equator plane

intersects the ecliptic plane. Whenever the Sun is in one of these two points, an

equinox occurs. The first point of Aries has been chosen as the vernal equinox that

occurred in 1950. This points towards somewhere in the Pisces constellation. The

first point of Aries moves at a constant rate of about one degree every 71 years. This
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Figure 2.4. Celestial and ecliptic planes together with the equinoxes

movement is small enough to be considered constant considering the typical timescale

of observed solar phenomena, which does not usually go over 6 months.

Both these coordinate systems have the origin at the center of the Sun, thus the

name - heliocentric. These coordinate systems are used to represent the 3D position

of the satellites. The satellites are designed to look towards the center of the Sun,

making the remaining 3 rotation parameters known. Details on how to compute them

will be given in chapter 4.

2.2.2 Image coordinate systems

Next we have to deal with conversion from 3D world coordinates to 2D pixel coordi-

nates. This is accomplished by using the helioprojective system. Even though they

are full 3D systems, they are not very useful to express real 3D world point as they

are mostly tied to the Sun, thus changing fairly rapidly with time. Another charac-

teristic that makes then unsuitable for this task is the fact that the observer point

of view is not included in the system, making it impossible to compare two images

taken from two different locations.

While not being used in practice, the helioprojective cartesian coordinates pro-
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West Limb

North Pole
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x

Figure 2.5. Heliocentric cartesian coordinate system

vide the background necessary for the other coordinate systems (Fig. 2.5). In this

coordinate system the Z-axis is defined as the observer-Sun line pointing towards the

observer. The X-axis is defined perpendicular to the plane defined by Z and the Solar

North pole (point around which the Sun rotates). The Y-axis is defined as the cross

product between the other two.

2.2.3 Helioprojective coordinate systems

Stars are usually considered far, flat, virtually positioned at infinity. This is not the

case for the Sun, therefore we need a more specialized (accurate) coordinate system

to express positions on the surface of the Sun (a sphere).

These coordinate systems mimic the heliocentric coordinates with the difference

that their distances are replaced by angles. The origin of this coordinate system is

located at the Sun’s center. The Y-axis points towards the solar North pole and the

X-axis towards the west solar limb. The solar north/south poles direction is defined



14

similarily to Earth as the direction perpendicular to the plane of solar rotation. We

could define the Z-axis to be the vector product between Y and X, giving us a left

handed coordinate system. In practice the third coordinate is fairly useless.

The conversion between heliocentric Earth equatorial and helioprojective cartesian

coordinates is one to one:

x ≈ D
( π

180◦

)
φx (2.2)

y ≈ D
( π

180◦

)
φy (2.3)

(2.4)

where x and y are the heliocentric coordinates, φx and φy are the two helioprojective

coordinates, D is the distance from the observer to solar center. The system assumes

implicitly the observation is carried out from Earth. This system is nothing more

than a spherical coordinate system analogous to one on the Earth. The system can

be extended by adding the 3rd coordinate ξ ≡ D−d, where d is the distance between

the feature and the observer. In the vicinity of the Sun we can consider that ξ ≈ z.

In practice in order to convert from pixel coordinates to helioprojective system

and other way around, we need three extra parameters: the center of the Sun in

pixels, a rotation around the satellites Z-axis (the yaw angle) needed to bring the

solar north to the top of the picture, and a scale, the number of degrees/pixel.

The only place where the helioprojective coordinate system is used is in solar

observations. The astronomers prefer most of the time to replace the true angles by

some pseudoangles. The pseudoangles are defined as the projection of a feature onto

the z = 0 plane expressed in angles. The pseudoangles vary with the tangent of the

real angle. Since the apparent angular size of the Sun, from Earth is around 1◦, the

pseudo and true angles differ only at the fifth decimal place.

This approximation is also used when one is observing a spherical surface with a

flat sensor and is called the TAN projection model.

More informations about common coordinate systems used in astrophysics can be
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found in [9].

2.3 Influence of magnetic field

The magnetic field is of paramount importance for both theoretical understanding

of and data processing. Once we have a model of the magnetic field which is simple

enough, we could use it to help us identify features inside the images provided by

STEREO.

The full dynamics of matter under magnetic and electric fields is described by a

system of 8 coupled partial differential equations called the magneto-hydrodynamic

equations (MHD). Since these equations are fairly hard to resolve, an acceptable

subset of equations chosen to model the magnetic fields in the corona are the 4

Maxwell equations (the hydrodynamics is considered negligible as the density inside

the corona is minimal):

O · E = 4πρE (2.5)

O ·B = 0 (2.6)

O× E =
1

c

∂B

∂t
(2.7)

O×B =
1

c

∂E

∂t
+ 4πj (2.8)

where E and B are the electric and magnetic fields, ρE is the electric charge den-

sity, c is the speed of light and j is the electric current density. We can introduce

further simplifications. Since we consider the fields as being in equilibrium, the time

derivative terms are negligible.

If we consider that the magnetic field is a potential field, it can be written in terms

of gradient of another field B = Oφ. We get the potential field approximation of the

field: O×O · φ = 0 where B = O · φ, O2 ·B = 0. Standard methods on how to solve

such equations are described in [10]. The solution to the potential field approximation

of the problem is the lowest energy configuration possible. This approximation holds
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only inside regions on the Sun where activity is very low [11].

For regions with stronger activity, the model of choice is the linear force free

model. The equation of this model is

O×B = αB (2.9)

With some further approximations this becomes O2 · B + α2B = 0, known as the

Helmholtz equation. The parameter α can give us a measure of how unstable the

region is (likelihood of a solar flare for example). For α = 0 we are back to our

potential field model.

The widely available magnetic data that is available from the MDI mission (Michelson-

Doppler Interferometer) provides us with just the normal component of the magnetic

fields on the surface of the Sun. Note however that the magnetic field is a vector

function B = (Bx, By, Bz) each component depending on (x, y, z). The data avail-

able from MDI is Bz(x, y, RSun). We need to propagate the information we have

throughout the whole volume of interest (extrapolate the field) in order to use it at

a later stage. In Fig 2.6 we have an example of a magnetogram provided by MDI.

Red patches represent fields that exit the surface of the Sun and green patches where

fields enter the Sun.

Fourier space methods recently developed in [12–14] provide very efficient ways to

extrapolate linear force free magnetic fields. It can be shown that the solution of the

Helmholtz equation can be expressed in terms of the Fourier transform of the normal
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Figure 2.6. Magnetogram provided by MDI

component:

Bx(x, y, z) =
∞∑

m,n=1

Cmn
λmn

exp(−rmnz) ·
[
α
πn

Ly
sin

(
πmx

Lx

)
cos

(
πny

Ly

)
(2.10)

−rmn
πm

Lx
sin

(
πny

Ly

)
cos

(
πmx

Lx

)]
By(x, y, z) =

∞∑
m,n=1

Cmn
λmn

exp(−rmnz) ·
[
α
πn

Ly
cos

(
πmx

Lx

)
sin

(
πny

Ly

)
(2.11)

−rmn
πm

Lx
cos

(
πny

Ly

)
sin

(
πmx

Lx

)]
Bz(x, y, z) =

∞∑
m,n=1

Cmn exp(−rmnz) · sin
(
πmx

Lx

)
· sin

(
πny

Ly

)
(2.12)

with λmn = π2(m2/L2
x + n2/L2

y) and rmn =
√
λmn − α, and image sizes are Lx and

Ly. We can find the coefficients Cmn by choosing z = 0 in the Bz formula and taking

the FFT of Bz(x, y, 0) (our image provided by MDI). In practice we have to do an

antisymmetric mirroring of Bz before computing the FFT to get the identical formula:

Bz(−x, y) = −B(x, y) (2.13)

Bz(x,−y) = −B(x, y) (2.14)
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Fig 2.7 contains an input image and a few traced lines from the resulting extrapolated

magnetic field by the method developed by [14]. Also notice that lines which start

very close to the edge of the image exit outside the frame due to periodicity of the

discrete Fourier transform.

Since the coronal loops follow the magnetic field lines, we could use the extrapo-

lated field lines to perform a feature based reconstruction of loops.
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Figure 2.7. Linear force free magnetic field reconstruction



Chapter 3

3D GEOMETRY AND RECONSTRUCTION

This chapter will introduce some essential tools used in computer vision that will

be used in the chapters to come. For a more in-depth introduction refer to [15, 16].

3.1 Homogeneous coordinates

The equation of a line in two dimensions is given by: ax+by+c = 0, different choices

for a, b and c generate different lines. It is also possible to rewrite this equation by

using inner product:

(
a b c

)
·


x

y

1

 = 0 (3.1)

The point (x, y, 1)T on the line is said to be the homogeneous representation of the

2D point (x, y). Clearly if such a point (x, y, 1)T belongs to the line, so will the point

(kx, ky, k)T . Thus we have an equivalence relation between all points that satisfy the

equation of the line (a, b, c), (x, y, 1) ≡ (kx, ky, k),∀k 6= 0. The concept of homoge-

neous coordinates, which are also called projective coordinates, can be expanded in a

similar fashion to spaces of higher dimensions. The conversion between homogeneous

and Euclidean points is straightforward: just multiply the point by constant such that

the last coordinate becomes 1 and drop it:(x, y, k) ∼ (x/k, y/k, 1) −→ (x/k, y/k).

It is important to note that even though the 2D homogeneous coordinates have 3

components, the dimension of the space is still two. One advantage of using the

homogeneous coordinates is the ability to represent points and lines at infinity. This

is simply done by letting the scale factor k tend to 0.



21

Another advantage of using this representation is the ability to represent the

rotation and translation of a coordinate system as a linear operator. In case of 3D

homogeneous coordinates this looks like:

Pc = R(Pw − T ) (3.2)
Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 ·

Xw

Yw

Zw

1

 (3.3)

3.2 Camera models

In most computer vision applications the data used is produced by cameras. Therefore

it is crucial to be able to model the image formation. Throughout this section we

will gradually develop the model for a perspective camera.

In its purest form, a camera consists of a focal point where all light rays intersect

and a focal (imaging) plane where the image is formed, lying at a certain distance

(focal length) (see Fig. 3.1).

The center of projection is called camera center. A line of sight is selected as the

principle axis, that contains the camera center. Usually it is perpendicular to the

image plane. The intersection of the principle axis with the imaging plane is called

the principle point.

There are three coordinate systems tied to cameras that present importance

(world, camera and image coordinate systems). The first one is the world coordi-

nate system. To pass from the world system to the camera coordinate system we use

the external parameters. The internal parameters allow us to pass from the camera

system to the image coordinate system. The image coordinate system has the origin

in the bottom left corner of the image (unlike image processing softwares that con-

sider the origin in the top left corner). The Y axis is increasing upwards and the X
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Y/Z

f

Y

Z

Figure 3.1. Pinhole camera projection model

from left to right. By convention the camera is observing the world in the negative

Z direction.

Under this model, a point in the world Pw = (x, y, z)T is mapped to a point on

the image Pi that lies at the intersection of the line defined by the camera center and

the point in the world, and the image plane. It is easy to notice that the point in

the world (x, y, z)T 7→ (fx/z, fy/z, f)T under the previous projection. If we exclude

the last coordinate we get: (fx/z, fy/z)T . Defining depth as being d = 1/z we get

fdx, fdy.

If the world and image points are expressed in projective coordinates we can write
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the mapping as: 
X

Y

Z

1

 −→

fX

fY

Z

 =


f · · 0

· f · 0

· · 1 0



X

Y

Z

1

 (3.4)

This is a mapping from 3D projective to 2D projective space. The result we get is

the same as before (fx, fy, z)T ∼ (fx/z, fy/z, 1)T .

The previous projection model assumed that the origin of the coordinates in the

image plane coresponds to the principle point. A more general form of the mapping

is (x, y, z)T → (fx/z + px, fy/z + py)
T , with (px, py) being the coordinates of the

central point. In matrix form this becomes:
X

Y

Z

1

 −→

fX

fY

Z

 =


f · px 0

· f py 0

· · 1 0



X

Y

Z

1

 (3.5)

The matrix:

K =


f · px

· f py

· · 1

 (3.6)

is called internal parameter matrix. This matrix captures intrinsic properties of the

camera like the field of view and the position of the sensor with respect to the principle

line (given by the optics). In mathematical terms this simply does a rescaling and

shift of the points.

This projection model assumes that the world reference frame in which 3D points

in the world are expressed coincides with the coordinate system of the camera. In

general this is not the case so we are forced to do another transformation to align the

coordinate systems. This transformation is described in equation (3.3). The rotation
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and translation that are needed to align the camera with the world reference frame

are called the external parameters matrix M.

Putting all these transformations together from world to the image we obtain:

Pc = KMPw (3.7)

Pc =


f · px 0

· f py 0

· · 1 0



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

Pw (3.8)

It is worth noting that a rotation around the Z camera axis is in fact a 2D transfor-

mation and can be perceived as being an external parameter or an internal one (a

physical rotation of the CCD sensor). In this project we have considered this rotation

as part of the internal parameters matrix. In this case the internal parameters matrix

K becomes

K =


a b px

c d py

0 0 1

 (3.9)

The upper 2x2 block does a Z-rotation and a scaling.

3.3 Radial distorsion

The assumptions so far were that the linear camera projection model is accurate.

This remains valid for high-end lens with large focal lengths. When this is not the

case, radial distorsion becomes apparent. This manifests itself by rendering straight

lines in the world as curved, as illustrated in Fig. 3.2.

The position where the 3D points are projected gets affected by a non-linear

function L, which depends only on the distance to a certain distorsion center. In

camera coordinates (before applying the internal parameters) the distorsion model

looks like this: x
y

 = L(r̃)

x̃
ỹ

 (3.10)
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Figure 3.2. Radial distorsion [1]

where x, y are the coordinates flawed by radial distorsion and x̃, ỹ are the coordinates

of the linear camera and r̃ is the distance to the distorsion center. This takes advan-

tage of the fact that the optical center (and most of the time distorsion center) has

the coordinates (0, 0). In pixel coordinates the relation becomes:

x = xc + L(r̃)(x̃− xc) (3.11)

y = yc + L(r̃)(ỹ − yc) (3.12)

with xc, yc being the distorsion centers. If the aspect ratio of the images is not 1,

we need to multiply one of the coordinates by a scalar to bring it to 1, apply inverse

distorsion and multiply by the inverse.

The radial distorsion function is defined only for positive values of r and L(0) = 1

such that the distorsion center does not get affected by the transformation. The

function L(r) is generally unknown (unless we have some prior knowledge about the

optical system of the camera). An approximation to this is given by the Taylor

expansion: L(r) =
∑∞

i=1 kir
i. In practice three or four terms are enough to achieve

good enough results. We consider the even expansion of the radial distorsion function
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for negative values (since the distance is always positive). This means that if we

consider only even power of r we will achieve same accuracy but with less parameters

to estimate. In a similar fashion once could take odd powers if we consider the

function to be odd.

The easiest way to estimate the parameters ki for the radial distorsion is to mini-

mize some cost based on derivation of some linear operator like a homography between

a planar scene and an image. If we need to compute the distorsion centers as well xc

and yc, we need to iterate between finding the distorsion center and reestimating the

ki’s.

3.4 Planar homographies

A homography is a general planar (two dimensional) projective transformation. Ho-

mographies are extremely useful in practice as they enable us to rectify images such

that they have certain properties like fronto-parallelism (views that differ just by a

translation), useful for planar panorama making and for stereoscopic reconstruction.

Also given enough homographies of the same camera with different planes one can

compute most camera parameters (like internal parameters, essential matrix, etc.).

Formally a homography is defined as a linear transformation: H : P2 → P2 that takes

a point pi to point p′i, p
′
i = Hpi. In this formulation vectors which have the good

orientation but differ in magnitude do not obey the equation as they should (since

we are dealing with projective vectors). An alternative formulation of a homography

is: p′i × Hpi = 0. This leads to a set of linear equations that can be easily solved.

Specifics can be found in [15].

3.5 Stereoscopic reconstruction

The general problem of stereoscopic reconstruction can be posed as: given a set of

images of the same scene, taken from different positions, recover the 3D information
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Figure 3.3. Triangulation

of each pixel in the image.

As you have noticed in the chapter 3.2, the only unknown for each pixel in the

image is the Z coordinate of the 3D world point that generated the images. Therefore

knowing the projection model for each camera (camera matrices) and the position of

the cameras with respect to each other and pixel correspondences, one can calculate

the missing coordinate by using triangulation.

As illustrated in Fig. 3.3, once we have managed to establish that the 3D world

point P corresponds to point x in the reference image A and x′ in image B it is

fairly straightforward to solve the problem. If we know that a pixel in the first view

corresponds to another pixel in the second view we can compute the position of the

point in the world using triangulation. In order to obtain the pixel coordinates inside

a camera with matrix M of a 3D projective point, we simply multiply the point

with the matrix and divide by the third coordinate. Similarily to deproject an image

point at depth d we simply multiply this point by the inverse camera matrix. The

3D projective coordinates of a pixel (ix, iy) in an image at depth d are: (ix, iy, 1, d).

The third coordinate of a pixel inside an image is equal to 1 since by convention the

imaging plane is at z = 1 in the camera coordinate system.
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In stereo, we pick x in the first image and by associating different depths d and

reprojecting into the second view at x′ and see if we have a good match.

The process of deprojecting a camera pixel (ix, iy) at depth d and reprojecting in

a second image is called triangulation. Given a point in the first camera and that two

camera matrices the deprojecting and reprojecting is done by computing:

Mb ·M−1
a


ix

iy

1

d

 (3.13)

We choose the depth of the pixel as being the one that minimizes the distance

between our expected position and the actual position in the second image.

The correspondence estimation problem is far from being a trivial one. Besides the

fact that noise can very quickly degrade our solution, we might encounter occlusions.

In Fig. 3.4 you have an example of occlusion. Point B is visible from both camera,

whereas because of the depth difference, point C is occluding A. Other complications

include specularity and transparency of surfaces (which this project was aimed to

deal with).

3.5.1 Epipolar geometry

The epipolar geometry between two views is the geometry that describes the relative

positions of two cameras. It essentially describes for a point x in one image, the

potential locations of matches in the second image. Observe in Fig. 3.5 that the two

image points and camera centers are coplanar with the world point P . Similarly the

backprojected rays that pass through x and x′ are coplanar and intersect at P . This

last property is of paramount importance to the correspondence problem as it limits

the matches along a line. When epipolar lines are horizontal, the stereo process is

greatly simplified to 1D horizontal searches. In this thesis a method is presented for

rectification of solar images such that the epipolar lines are horizontal.
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Figure 3.4. Occlusions: A is partially occluded, B is fully visible and C is an

occluder
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Figure 3.5. Epipolar geometry
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The epipolar geometry is governed by the following parameters:

• The epipole e, e′ is the intersection of the baseline AB with the two image

planes.

• The epipolar plane is the plane that contains the baseline. This has one free

parameter, the angle.

• The epipolar lines are the intersection of the epipolar plane with the two

imaging planes. This gives correspondences between lines.

The method how to derive formulas for the epipolar planes will be given in the

chapter 4.

3.5.2 Establishing correspondences

In order to match pixels along an epipolar line, we define the similarity of two pixels

in terms of a cost function. Common choices for cost functions are:

c =
∑
‖ vi − vr ‖n (3.14)

c =
∑
‖ vi − v ‖n (3.15)

where vi is the pixel intensity value in the ith camera, vr is the reference pixel value

and v is an average pixel value. ‖ · ‖n is the Ln norm. Common choices for n are 1 or

2. In order for such cost functions to work one has to make the following assumptions:

• The objects are opaque

• Constant intensity in all views (a world point projects to the same intensity

value in both images)

• Lambertian1 surface

1 Lambertian surfaces reflect light the same way regardless of the viewing angle
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1 2

x x’

Figure 3.6. Correspondence of x and x′ on an epipolar line

• No occlusions

The simplest method is to choose one pixel in the first image and search inside an

interval in the second image for the best match according to our cost function (Fig.

3.6). This approach was proposed by Kanade [17]. This method calculates correspon-

dences of each pixel independent, giving a noisy estimate. In practice neighboring

pixels usually have the same value, depth (not considering discontinuities) and adding

a smoothing cost will greatly improve solution.

Since real world surfaces tend to be smooth we can include a smoothing cost by

matching two whole epipolar lines together. The new energy function will be of the

following form:

E = Ec + Es (3.16)

The first term, Ec, is the correspondence cost, defined earlier. The second term, Es,

penalizes the difference of depth between neighboring pixels along an epipolar line.

This can be again some norm of the difference between the disparity of the current

pixel and that of its neighbors. Such problems can be easily solved using Dynamic

Programming (see Fig. 3.7). The cost Cost(x, d), of the pixel x in the first image to
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Figure 3.7. Dynamic programming

Figure 3.8. Tsukuba dataset: Left - direct search, Right - dynamic programming

match at x+ d in the second one is:

Cost(0, d) = c(0, d) (3.17)

Cost(x, d) = min
d′

[c(x, d′) + Cost(x− 1, d′) + S(d, d′)] (3.18)

where c(x, d) is the correspondence cost and S(d, d′) is a smoothing cost.

In Fig. 3.8 you can observe the resulting depth map of the two algorithms on

the famous Tsukuba dataset. The direct search method result is much noisier than

the dynamic programming one. You can observe some “streaks” in the dynamic

programming solution, as the smoothing is imposed only along horizontal epipolar

lines.
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3.5.3 Volumetric reconstruction

The approach that was outlined, goes by the name of stereoscopic reconstruction. A

reference view was chosen and the scene was reconstructed from the point of view

of this camera. However this becomes impractical as the number of views grows.

Because of the occlusions, this method works only if all cameras are situated on the

same side of the object. Also this method breaks down if two cameras are facing each

other.

To get rid of these limitations the problem can be approached from a slightly

different angle. Instead of choosing a reference view, we discretized the 3D recon-

struction space into voxels. Each voxel can be projected in each camera. The color

of each voxel can be taken as the average of the colors in the cameras that see this

voxel. Occlusions can cause a lot of problems since the views are often very separated.

One of the most popular volumetric reconstruction algorithms is the space carving

algorithm proposed in [18].

3.6 Satellite camera calibration

In this section we will present how the two satellite camera matrices are computed.

In order to calibrate the external parameters of the camera, we need to find the

three translation components and the orientation information (rotation with respect

to the world coordinate system). For the internal parameter matrix we need one

focal length, two values for the optical center (in pixels) and one parameter which is

the rotation around the camera Z axis (the Z rotation can be considered as either

internal or external parameter as it is a two dimensional transformation). Since all

parameters provided by the mission, contain a fair amount of error we will introduce

an extra matrix that corrects the value for all linear acting parameters. Additionally

we want to calibrate for radial distorsion so 3 extra parameters are needed (more

parameters do not introduce significant improvements). Since radial distorsion is not
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linear in nature, it is impossible to express it as a matrix operator.

3.6.1 External parameters

We choose the HAE (Heliocentric Aries Ecliptic) system as the world coordinate

system. The reason for this is that this system is most stationary of the ones given

by the NASA and most other spaceborne missions have their coordinates in this

system as well. This system has its origin at the center of the Sun, the X axis points

at the first point of Aries, Z towards the ecliptic north pole, and the Y axis is defined

as a cross product of the other two to end up with a right-handed coordinate system.

The three components of translation are given already in the header of the images

as HAEX OBS, HAEY OBS, HAEZ OBS.

From the mission description we know that the satellites are looking approximately

towards the center of the Sun (origin). To find the rotation we will procede by

a constructive approach. Since the camera looks towards the negative Z axis, the

camera Z axis should be equal to normalized translation vector. We have computed

the camera coordinate system up to a rotation around the Z axis. We choose the

camera X axis to be perpendicular to the plane formed by the world Z and camera

Z axis. The camera Y axis is just the cross product between the camera Z and X

axes.

Once we have the new coordinate system, the rotation matrix between the stan-

dard (canonical) coordinate system and an arbitrary one is just a stacking of the axis
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vectors.

cz = T (3.19)

cx = cz × [0, 0, 1] (3.20)

cy = cz × cx (3.21)

R =


cTx

cTy

cTz

 (3.22)

where T is the translation, cx, cy, cz are the camera coordinate system axis and R

is our rotation matrix. With these parameters computed, the external parameter

matrix is simply M = [R | T ].

3.6.2 Internal parameters matrix

All parameters for the internal matrix are given in the FITS headers, but in a form

which is not really usable for computer vision. The internal parameter matrix nor-

mally produces a shift and rescale between the image and camera coordinate system.

Additionally, in case of STEREO camera there is an extra rotation around the optical

axis. The location of the optical center is given by the CRPIX1 and CRPIX2 header

keywords. The image scale is given in arcseconds/pixel is given by the CDELT1 and

CDELT2 keywords. This value has to be multiplied by π
3600·180

in order to get ra-

dians/pixel. The Z rotation matrix components is also given as PC1 1, PC1 2,

PC2 1, PC2 2. With this the internal parameters matrix is [9]:

Mi =


−PC2 1/α PC1 2/α CRPIX1− 1 0

PC2 1/β PC1 1/β CRPIX2− 1 0

0 0 0 1

 (3.23)

α = CDELT1 (PC1 2 ·PC2 1−PC1 1 ·PC2 2) (3.24)

β = CDELT2 (PC1 2 ·PC2 1−PC1 1 ·PC2 2) (3.25)
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The upper 2x2 block does the rotation and scaling and the other two entries the

shift. The matrix has this complicated form since all parameters given in the header

perform the conversion from image to camera coordinates, but the internal parameter

matrix is supposed to perform the conversion in the other direction.

3.6.3 Corrections matrix

The STEREO B satellite is assumed to have accurate internal parameters. We are to

find the corrections to the internal parameters for the STEREO A images such that

the alignment fits best. Note that the radial distorsion is assumed to be the same for

both images. We introduce the following linear correction parameters:

• two parameters for the optical center

• one parameter for the scale factor

• one rotation angle around the Z axis

We have also tried optimizing for rotations around the X and Y axis, but the

effect is almost totally explainable by the shift of optical center since the field of view

is very small.

With this new matrix, the projection model becomes:

Pi = MshiftMscaleRzMintRxRyMextPw (3.26)

where Pi is a point in the image, Pw is a 3D world point, Mint internal parameter

matrix, Mext external parameter matrix, Mscale matrix adds a multiplier to the cal-

culated focal length and Mshift changes the position of the optical center. In all that

follows Rx and Ry are considered identity because of their insignificant effect.
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We can group all the non-identity matrices into one Mcorr = MshiftMscaleRz:

Mshift (dx, dy) =


1 0 0 dx

0 1 0 dy

0 0 0 1

 (3.27)

Mscale (sx, sy) =


sx 0 0 0

0 sy 0 0

0 0 0 1

 (3.28)

Rz (θ) =


cos θ sin θ 0 0

− sin θ cos θ 0 0

0 0 0 1

 (3.29)

(3.30)

We notice that all correction parameters are linear Euclidean two dimensional trans-

formations. The chosen objective function is the mean squared sum of differences

between the two images inside a patch in the 304Å wavelength (orange images).

These images provide a view of the surface of the Sun. At this depth there are not

many proeminences, and the rectification is made in such a way that objects at RSun

will not exhibit any parallax.

The radial distorsion is not a linear transformation giving a very different effect

from a scale/shift transformation. For this reason the problem is easily optimized

(the cost function does not have valleys if one considers any pair of variables). This

cost function contains 7 variables (2 for shift, 1 for scale, 1 for Z rotation and 3 for

radial distorsion).

The deformation model for the radial distorsion is taken as in [19]:

L(r) = 1 + k1r
2 + k2r

4 + k3r
6 (3.31)
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This correction is applied in the end:

x = xc + L(r̃)(x̃− xc) (3.32)

y = yc + L(r̃)(ỹ − yc) (3.33)

with Pi = [x, y, 1, a]T , previously defined and r =
√
x2 − y2, where r is taken as the

distance to a distorsion center, the center of the image in our case.

In the next chapter we introduce a method to rectify images taken by the STEREO

mission where structures on the surface of the Sun are situated on the zero disparity

surface (there is no motion parallax). This is particularly useful to align the two

available views (that observe the surface of the Sun).

To compute the parameters for the correction matrix and radial distortion we try

to minimize the sum of square differences between pixels of the 2 views taken in the

304Å. This wavelength gets formed very close to surface of the Sun, thus carrying

very little depth information.

There are times when the minimization algorithm does not converge to the global

minimum since the cost function might become very noisy because of the non-linear

parameters (radial distorsion or Z-rotation). When this occurs we will perform the

minimization in two steps: first start minimize the linear parameters setting the non-

linear ones to 0. In the second step we set the linear term to the optimal values and

minimize the non-linear terms. This ensures that the starting point for non-linear

parts is close to the true solution.

An alternative is to minimize all variables at once and use some probabilistic

minimization algorithm like simulated annealing, but this is extremely slow.
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RECTIFICATION

4.1 Related work

In section 3.5 we introduced the concept of epipolar geometry. This makes it possible

to reduce the stereo search space from two dimensions to one. Since matching along

horizontal epipolar lines is very desirable, we will rectify the solar images. All rec-

tification methods require that the cameras to be calibrated (internal and external

parameters), which was described in the previous chapter.

The first rectification method we will be presenting is introduced in [20] and is

by far the simplest method but does not work for all camera configurations. Next

we will present a brief introduction to the cylindrical rectification method [21] which

resolves the previously mentioned problems. In the end we will present a rectification

scheme that is specifically adapted to the case of spherical objects.

The rectification can be characterized in general terms as a succession of following

operations:

• rotation of a pencil plane around an axis (baseline) and intersection with the

two imaging planes

• mapping of an epipolar line onto a surface with a specific discretization

4.2 Planar rectification

The planar rectification is also known as rectification with homographies. The goal of

rectification is making all epipolar lines parallel to each each other and aligned with

one axis of the image (see Fig. 4.1). In order for the lines to be parallel the epipoles
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Figure 4.1. Original and rectified epipolar lines

have to be mapped at infinity. This is being realized by remapping the images onto

two fronto-parallel views (two planes that differ just by a translation).

Without loss of generality we assume the following:

• R, T and principle point for both cameras are known (camera matrices).

• the origin of the image coordinate system is at the principal point of the right

camera.

• both cameras have focal length f .

The algorithm consists of finding the rotation matrix such that the epipoles in both

cameras go to infinity horizontally. Next we compute a second rotation, between the

two cameras and align them to be fronto-parallel. As a last step we have to adjust

the scales of the images.

In order to find the rotation matrix to make the views fronto-parallel we have to

find 3 mutually orthogonal vectors e1, e2, e3. This problem is underconstrained so we

have to make an arbitrary choice for vectors. The vector e1 is given by the epipole,

which is actually the translation between cameras:

e1 =
T

‖ T ‖
(4.1)
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We choose e2 as being perpendicular to e1 (we have one degree of freedom). For this

we can take the cross product between the optical axis of one camera and the vector

e1. This gives the vector e2 perpendicular to the plane formed by the optical axis

and e1:

e2 =
1√

T 2
x + T 2

y

[
−Ty Tx 0

]T
(4.2)

The third vector e3 is simply the normalized cross product of e1 and e2, e3 = e1×e2.

Once these vectors are computed, the rotation, Rrect, that makes the epipolar lines

go to infinity is:

Rrect =


eT1

eT2

eT3

 (4.3)

The rectification algorithm in short follows the following steps:

• compute Rrect from equation 4.3.

• compute the rotation matrices for left and right cameras Rl = Rrect, Rr =

RRrect, where R is the rotation matrix of the left camera.

• multiply each pixel p = [x, y, f ]T from the left and right images by the appro-

priate rotation matrices, Rr, Rl, RlP = [x′, y′, z′].

• rescale left and right images according to p′l = f/z′[x′, y′, z′].

The pixel coordinates obtained through rectification will probably not be integer.

In order to maintain the image quality it is better to perform the rectification the

other way around: for each pixel in the final rectified image, one should apply the

inverse transformation and end up with fractional coordinates in the original image,

which can be interpolated.
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One problem when rectifying images is that the image bounds will not be the

same. If the original and final images have to have the same size, one can change the

scale applied to the image.

There are certain camera configurations that are impossible to rectify by this

method. One is if one camera can “see” the other camera’s optical center inside the

image (the translation in the camera Z direction is significant). In such a case the

epipolar lines are radial around a point called the focus of expansion (FOE). In this

case rectified images have infinite size. There is no rotation matrix that can rectify

such pairs of images. Also the distorsion of images through the rectification process

is a concern when the cameras are approaching this degenerate configuration.

4.3 Cylindrical rectification

The previous rectification method remaps images onto two fronto-parallel planes.

While this is a very simple and efficient method as all operations are linear 2D pro-

jective, it has some problems. The method proposed by [21] and slightly modified by

[22] employs 3D projective transformations. We will just provide the outline for the

methods as they are more complicated.

As the name suggests this method remaps the images from image planes to a unit

radius cylinder that has its axis aligned with the baseline (the line defined by the two

camera optical centers). The method proceeds in a similar fashion as for the planar

rectification. The rectification is done in three steps:

• each epipolar line gets rotated to be get parallel with the baseline.

• a translation is applied to change the reference system from each camera to the

cylinder.

• a scaling is applied to bring the line to the unit radius cylinder.
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While the planar rectification applies a global linear transformation, the cylin-

drical rectification method needs one linear transformation per epipolar line. This

method guarantees that the final image will be of finite size regardless of the camera

configuration. The resulting image is of minimal size such that there is no loss of

information through the transformation. The length of the epipolar lines is preserved

but unfortunately the straight lines which are not parallel with the epipolar lines are

not preserved.

This method can handle arbitrary camera geometries, but not panoramic cameras

that have a viewing angle of 180◦ or more.

4.4 Spherical rectification

An equally good rectification surface would be a sphere. Besides being able to handle

an arbitrary camera configuration and keeping rectification images bounded it adds a

few useful properties when the observed object is spherical. Unfortunately no straight

lines inside the images will be preserved after rectification, unless they are the epipolar

lines themselves. However the transformation is totally reversible.

This new rectification scheme has the following properties:

• zero disparity surface should be on the Sun.

• voxels that are induced by the rectification, that are further from the Sun should

always project inside the images on integer pixel coordinates.

As you will see in chapter 5 the second property will be very useful when com-

puting each voxel contribution to an image pixel.

The rectification is illustrated in Fig. 4.2 for two cameras observing a spherical

object.

If we discretize the common visible surface of the Sun and the cast the rays that

join each point on the Sun with the two cameras, we obtain a mesh that satisfies
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BA

Figure 4.2. Epipolar line with spherical rectification

the first requirement: if all matter is concentrated on the surface of the Sun (no

transparency on top) the stereo algorithm will match pixel i in the first image with

pixel i in the second image (first ray cast from camera A will intersect first ray from

camera B). In order to satisfy the second requirement we define the grid at height k

as being the place where of intersection between ith ray from camera A and (i− k)th

ray from camera B. Since the grid is defined by the rays from the surface of the Sun to

the two cameras, all higher voxels will project to the point on the images. In Fig. 4.2

you can clearly see the five levels of the mesh, corresponding to the 5 disparities. One

can easily notice that this way of building the mesh has two unwanted properties:

• the kth level has k less voxels than the zero height (surface of the Sun).

• voxels close to the middle of the grid expand faster near the side.

In order to avoid the use of an unstructured grid we can repeat k times the first
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point to be able to keep the number of voxels constant for all layers.

The second unwanted property can be easily fixed by choosing a non-uniform

discretization (we introduce more points in the middle).

In order to rectify the images we will rotate a pencil plane around the baseline

and intersect it with the sphere. There are two basic geometric problems that we

will encounter multiple times throughout this rectification scheme: equation of the

circle that is generated by intersecting a sphere with a plane and tangent lines to the

sphere that are contained inside a plane.

4.4.1 Intersection of a plane with a sphere

First we have to find out the center of the circle. If the plane is defined by its normal,

the center of the circle is simply the position on the plane where the normal passes

through the center of the sphere. Notice in Fig. 4.3 that a right triangle is formed by

the center of the sphere, center of the circle and any point on the circle. From this

triangle we can find the radius of the circle. Now to generate a circle we just have to

rotate around the plane normal vector:

Circle = Center +R ∗ [cos a, sin a, 0] · [nx, ny, nz]T (4.4)

where [nx, ny, nz] is the plane normal and a spans [−π, π]. The basics are illustrated

in Fig. 4.3.

4.4.2 Tangent line to a sphere

We need to find the angle at which a line contained inside a plane becomes tangent

to the sphere. The plane has the normal parallel to the Z axis. Consider the problem

of finding the angle α at which a line becomes tangent to the circle shown in Fig

4.4. There are two coordinate systems that are important: given an X axis (which is

the baseline in our case), one coordinate system has Y pointing towards the center of

the sphere - CS1(P, x1, y1) and another that differs by a rotation around the Z axis,
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Figure 4.3. Sphere with corresponding circle

CS2(P, x1, y2). In Fig 4.4 you can see the 2D problem we have to solve (the plane

defined by CS2).

The angle α inside the CS1 coordinate system is just given by cos−1(AC
PC

), where

AC is the radius of the circle resulting from intersecting the sphere with the plane

defined by CS2. The vectors v1 = Ry1 and v2 = RTy1 will become collinear with

PA, PB respectively (R is the rotation matrix around the axis z by α). The angles

of tangency inside CS2 are given by: tan−1( v1·y2
v1·x2

) and tan−1( v2·y2
v2·x2

) respectively. Note

that generally, the two angles of tangency are equal inside CS1, but not inside C2. It

is important to ensure that all returned angles are inside the interval [−π, π].

In order to rectify with this method we have to go through the following stages:

• find the common visible region from the two views (latitude angles) and dis-

cretize.

• for each generated plane find the common longitude angles and discretize.

• project images onto the the discretized sphere (latitude and longitude).



47

C

P

BA

α

x1

x2

y1

y2

Figure 4.4. Two dimensional circle tangent problem.

Figure 4.5. Solar rectification. Satellite A and B with the highest and lowest

epipolar planes (tangets to the Sun)
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4.4.3 Common latitude range

We consider the following coordinate axis for the plane: x-axis is pointing along

the baseline from satellite A to B, Z axis is perpendicular to the plane formed by

the x-axis and the translation of satellite A and Y perpendicular to the other two.

The Y-axis is the perpendicular to the baseline and passes through the center of the

sphere.

With this coordinate system, the problem of finding the latitude range amounts

to finding the tangents to the sphere that are contained in the Y Z plane and can be

carried out by the above mentioned method. We can place the origin of the coordinate

system anywhere onto the baseline without changing the result.

4.4.4 Common longitude range

We will have to solve for the range of latitude angles to remain onto the sphere for

both satellites. Afterwards we compute the overlapping interval. We have to compute

this range for each latitude angle.

The coordinate system differs from the previous one simply by the fact that it is

rotated around the x-axis by the chosen latitude. The origin is chosen in turn at the

position of satellite A and B.

The problem is simply to find the two tangents to the sphere that are inside the

XY plane.

In Fig. 4.5 the two satellites are shown together with the Sun and the common

latitude. The thick line on the Sun represents the intersection of a pencil plane that

rotates around the baseline and the Sun (one epipolar line). To rectify the whole

image the plane sweeps the whole interval of common latitude.
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Figure 4.6. Cartesian discretization of a circle

4.4.5 Discretization of angle ranges

The easiest way to subdivide the angle range is select points with an uniform arc

spacing. There are however some disadvantages to this. We have observed in Fig.

4.2 that points which are closer to the middle of the angle range move much faster

away from the Sun when we increase the grid layer. This is inconvenient, since we

will have a very low resolution inside our reconstruction grid for the center points

(the resolution is limited by the fastest moving point). A simple solution is to sample

finer towards the center of the interval. Such sampling functions will generally have

discontinuities at the ends of the interval. Consider the cartesian representation of

the positive half of a unit circle: y =
√

1− x2, shown in Fig. 4.6.

Notice that points at the sides are spaced very far away if we look at the arclength

even though the original grid was uniform. The behavior is captured by the derivative

of such function:
d

dx

√
1− x2 =

x√
1− x2

(4.5)

This function clearly has discontinuities at ±1.

Since our angle range are not from -1 to 1, we start with the uniformly spaced
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interval (−1, 1). Afterwards we apply our resampling function (the derivative of the

the circle) and rescale the result to (−1, 1) since the first and last points will tend to

infinity. Next we simply rescale these points to the interval [α1, α2] (the two tangent

angles).

We can choose the amount of “non-uniformity” by starting with the interval

(−k, k), k < 1 rather than (−1, 1). If k is very small we end up in the uniform

sampling case as the circle does not vary very much around 0.

4.5 Some results

In Fig. 4.7 you can see some images resulting from rectification using k = 0.7.

Notice that in the case of uniform sampling the edges are extremely stretched.

This is due to the fact that pixels which are close to the sides of the Sun have the

same size as pixels in the center, which is not backed by the observation model. For

an example of both left and right images refer to Fig. 6.8

For other spherical rectification models check [23, 24]
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Figure 4.7. Top: original image, Middle: uniform sampling, Bottom: non uni-

form sampling



Chapter 5

RECONSTRUCTION OF SEMI-TRANSPARENT

VOLUMES

While there are a lot of algorithms that provide excellent reconstruction meth-

ods for objects that are opaque and Lambertian, the problem of transparency or

specularity is still largely open. As is the case with most inverse problems, it is ill

posed.

5.1 Related work

The problem of estimating multiple depths inside transparent scenes has been widely

studied. The main contributions come from the fields of medical imaging, atmo-

spheric science and combustion. Most algorithms designed to handle transparency

were conceived to use large number of views or make a lot of assumptions about

the shape of the objects being reconstructed. We want to develop an algorithm that

can provide satisfactory results with just two or three views and make only minimal

assumptions about the observed objects.

5.1.1 Medical imaging

The problem of 3D reconstruction of transparent objects received most interest in

the context of computerized tomography. There are methods that work with as few

as two images but they produce just binary segmentation maps rather than a full

reconstruction [25–27]. In order to obtain full reconstructions, the number of views

needed ranges from tens to hundreds views. Even with additional regularization

assumptions the problem still becomes unsolvable when a very small number of views
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is available.

In [28] a method to reconstruct plasma (aurora Borealis/Australis) is given. It was

conceived to work with images from the IMAGE mission (Imager for Magnetopause-

to-Aurora Global Exploration), a mission that was supposed to provide insight into

the connections between the solar and earth magnetic fields. The method presented

in [28] uses a version of the tomographic reconstruction method, with additional

symmetry assumptions on the solution. The input consists of images from a single

satellite that are separated in time.

5.1.2 Computer vision

Probably the article that pioneered the study of transparency in the context of com-

puter vision was [29]. The algorithm iterates between the following steps: initial

disparity is estimated, visibility/transparency map is updated and last the color in-

formation at each depth gets updated. The algorithm works in a 4D space, the

dimensions being x and y (image coordinates), d (number of disparities), k (number

of available views).

To compute the initial disparities, the 4D space gets populated with color inten-

sities:

c(x, y, d, k) =Wf (ck(u, v);Hk + tk[0, 0, d]) (5.1)

with ck(u, v) the k-th image, Wf (◦;Hk) is a linear operator that rectifies each image

from the point of view of a virtual/reference camera, Hk + tk[0, 0, d] is a homography

that maps from camera k onto the d-th homography plane and c(x, y, d, k) is the

pixel color projected onto the 4D space. Next we can compute some statistics on

color distribution such as µ, σ2 over the k-dimension for each (x, y, d). If we just

choose for each x, y, the d that minimizes the σ2 we are replicating the direct search

algorithm presented in the introductory chapter, however visibility is not being taken

into account and neither is transparency, thus the results will be disappointing.
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Now we consider that each of the input images is formed by stacking d semi-

transparent layers. For this we apply the inverse mappingWb from the virtual camera

back to the input image k.

c̃k(u, v, d) =Wb(ĉk(x, y, d);Hk + tk[0, 0, d]) (5.2)

where ĉk = [r, g, b, α]T is the color information at (x, y, d) and c̃ is the color informa-

tion in the k-th camera coordinate system and α is the corresponding transparency.

Next we have to compute c̃k(u, v), the composite of the “transparent sheets” into

each view k and compare with the original data. For this we need to define the

visibility of each pixel Vk(u, v, d):

Vk(u, v, d− 1) = Vk(u, v, d)(1− α̃(u, v, d)) (5.3)

=
dmax∏
d′=d

(1− α̃k(u, v, d′)) (5.4)

where α̃k is the opacity of c̃k(u, v, d). Initially all visibilities Vk(u, v, dmax) = 1 and

they are propagated from front to back. The moment one pixel becomes fully visible

(Vk = 1), it will obstruct all pixels behind it. Now we have an easy way to composite

images for each view k:

c̃k(u, v) =
dmax∑
d=dmin

c̃k(u, v, d)Vk(u, v, d) (5.5)

As a last step we have to update the color information (see how far away are we

from the k input images). This problem can be posed as a non-linear minimization

problem with 3 terms:

C1 =
∑
(u,v)

wk(u, v)ρ1 (c̃k(u, v)− ck(u, v)) (5.6)

with wk being a weighting function that gives more importance to certain cameras

depending on their proximity to the virtual reference camera.

C2 =
∑

(x,y,d)

ρ1 (4ĉk(x, y, d)) (5.7)
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with4ĉk(x, y, d) being the Laplacian of the color and transparency information. This

enforces smoothness.

C3 =
∑

(x,y,d)

φ (α(x, y, d)) (5.8)

In the above formulas ρ1,ρ2 are quadratic or robust penalty functions. The function

φ increases sparsity of the solution preferring solutions where matter is fully opaque

or transparent φ(x) = x(1− x). The total cost function is:

C = λ1C1 + λ2C2 + λ3C3 (5.9)

which can be easily solved with a conjugate gradient-like algorithm.

This whole algorithm provides acceptable results but the fact that we have to fill

in initially the whole 4D space makes it very expensive in practice. We are also unable

to make sure that the reprojected colors and opacities ĉk(x, y, d) in the k available

views, c̃(u, v) are consistent with the images. Also the fact that for each voxel in the

4D space we compute both a color and alpha information makes the problem very

hard to minimize as the model is too flexible. In fact we can always exchange a pixel

with certain color and alpha by another one with lower color value and higher alpha

or vice-versa.

Another important contribution from the field of computer graphics, and the

inspiration for our approach, is introduced by [30]. A method is developed for re-

constructing flames from as few as two views. The solution provided by the method

exhibits some nice properties:

1. concentrates matter along continuous surfaces

2. is photoconsistent

3. most spatially compact distribution

The reconstruction problem is reduced to finding a convex combination of sheet-like

densities derived from the two input views. The method assumes a linear image
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Figure 5.1. Density sheet reconstructions generated by two orthogonal views

formation mode:

I =

∫
z

D(z)dz (5.10)

The observed intensity I is the integral along the line of sight of all densities. The

method makes some implicit assumptions. Negligible scattering, means that only

line of sight voxels contribute to the intensity. Constant emissivity assumes that each

voxel emits a constant amount of light and a higher intensity implies more matter.

Also each voxel just emits light and does not absorb it.

The two initial sheets are chosen to be monotonous curves in the (I1, I2) space

(Fig 5.1).

We compute the density sheets for each pair of orthogonal views. With this the

problem becomes:

Im(p) =
∑
r,c

w(r, c, p)D(r, c) (5.11)

where the unknown is w and D is a density sheet. This is equivalent to finding the

solution in terms of the basis formed by all the density sheets and w represents the

size of the projection of the solution onto the corresponding element. Stacking all

these equations together we are left with a problem of the kind:

minimize || Fx− I ||

subject to
∑
x = 1, x ≥ 0
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The density sheet basis can be extended leading to a better reconstruction, but the

number of such basses increases exponentially with the number or views.

Other more exotic approaches include [31], in which a matching operator is defined

for the standard stereo match problem. This operator gets generalized for matching

multiple disparities for each pixel. The problem gets transformed into finding the

roots of the operator, one root for each layer that is sought. This problem becomes

very fast ill conditioned and is unsolvable in practice for anything more than three

sheets.

A filter response method is proposed in [32]. The method uses a combination

between the images response to certain quadrature filters and canonical correlation

analysis. The filter’s phase caries the information on the multiple depths at each

pixel. In the end, the problem is equivalent to finding the peaks of the filters. While

this method is suitable for finding a small number of layers, like images that contain

semitransparent mirrors or views taken through a glass window, but fails for larger

numbers of depths.

5.1.3 Results from physics

There have been some attempts in physics to reconstruct solar coronal loops in three

dimensions. All approaches produce sparse reconstructions (depths are estimated just

for phenomena and not for background or inactive regions). All these methods use

multiple EUV images of the Sun separated in time and some use magnetic information

as well. They start by detecting the loops through some image processing method,

like specialized edge detection filter [33]. Since the output is extremely noisy, a stage

of “cleanup” follows usually involving magnetic field modelling. In [34] after applying

an edge detection filter, an iterative method that eliminates pixels deemed as being

noise and joins/splits features based on the magnetic field magnitude in the region

(in principle close to the Canny edge detector). In [35] an extension is presented that

takes into account some physical constraints such a curvature together with matching
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temperatures of loops.

In [36–38], after applying standard image processing methods, the extrapolated

magnetic field is used as a proxy to match features from the two images. A two step

minimization method is employed. First stage the features are matched and in second

the parameters for the magnetic field get updated (namely the free α constant in the

linear, force free model).

The approach presented in [39] does not use any magnetic field information. The

method assumes the coronal loops are characterized just by footpoint positions (where

the loops disappear inside the photosphere) as well as the vertical and azimuthal

angles. Solely image processing techniques are employed, but a full image formation

model using all 4 EUV is needed.

The method presented in [40] thresholds the input images as a first stage to

distinguish features from static regions. The active parts of the images get reprojected

in 3D and intersected in 3D. This approach is similar to the silhouette reconstruction

algorithm presented in [41].

5.2 Image formation model

We briefly presented in the previous chapter a linear formation model in the context

of reconstruction of fire. While we will use something similar, in our implementation

it is important to show the connections with the full emissivity model as given by

plasma physics.

5.2.1 Plasma emissivity model

In order to be able to pass from the pixel intensity values in the four available EUV

images to the quantities pertinent to physics, one has to establish an image formation

model. We have to model how is the passing done from the physical quantities to

the luminous energy and then the conversion from energy to pixel values (done by
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the sensor/optical filters). The first part of the problem is ill posed. We can assume

that the camera model is linear since the images are calibrated by the mission team.

From physics, the observed intensity is given by the plasma radiative transfer law:

I(x, y, λ) =

∫
z

∫
T

A(T )Λ(Nε(x, y, z), T (x, y, z), λ)Nε(x, y, z)NH(x, y, z)dTdz (5.12)

where I is called observed intensity in wavelength λ. A(T ) is called the element

abundance relative to hydrogen. Λ (Nε(x, y, z), T (x, y, z), λ) is called the radiative loss

function of the plasma and it contains the statistical information, the probabilities

to emit light at this certain wavelength given the temperature T , hydrogen density

NH and electron density Nε. Given the extreme temperatures inside the coronal, one

could consider NH ≈ Nε.

In order to be able to compute the intensity observed at a certain wavelength,

we need to reconstruct in 3D both the electron/hydrogen density and temperature

profile. The function Λ does not have an analytical form and needs to be computed

experimentally. Through a lot of experimentation, the behavior of our four available

wavelengths with respect to density and temperature can be computed. This function

acts like a convolution kernel on the (z, T ) dimensions of Nε and T . Through various

deconvolution techniques we are able to retrieve from I(x, y), T (x, y) and NH(x, y),

the integrals along the line of sight. Notice that the initial problem is not linear where

as the last one is. Usually, the quantity of interest is NH .

Like in the case of fire, matter only emits light and does not absorb, thus having

negligible opacity. Also the scattering is negligible as we are computing only along

the line of sight (there are more complicated models that take into account also

scattering). Unlike the fire model there is no constant self-emissivity as the energy

emitted due to high density or high temperature.

For more details on the plasma emissivity and ways to perform the deconvolution

refer to [10, 42–44]
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5.2.2 Linear model

Since the previous model is fairly complicated to implement, contains another ill

posed problem and the convolution kernel’s accuracy is still being debated, we will

settle for a simpler model. We assume a purely additive linear model in which we

have transparent matter in front of an opaque background.

I(x, y) =

∫
z

D(x, y, z)dz + Ibg (5.13)

The assumptions made are the usual constant emissivity and transparency and neg-

ligible scattering.

5.3 Problem statement

We have two or more views of a 3D volume of matter which is represented by its

density D(x, y, z). The image formation model is that outlined above and the cameras

are looking along the z axis. Our goal is to compute this 3D density distribution such

that it projects into our views consistently with the images (photoconsistency). If

we discretize the reconstruction volume as a cube with the side of length N , we have

N3 unknowns and only N2 constraints. Since the images are rectified in a convenient

matter we can take one epipolar line at a time in each image (corresponding to an

epipolar plane in 3D) and we have N2 unknowns with N constraints per image.

This means that there are a lot of density distributions that projected give the same

images, but not all are equally good reconstructions. For this we will also test different

constraints like smoothness, sparsity and layer distribution.

5.4 Reconstruction volume

The choice for the shape of the zero disparity surface and the rectification scheme

dictates the shape of the reconstruction volume. Normally the zero disparity surface

(infinite Z) is a plane fronto-parallel to the reference view and the reconstruction
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Figure 5.2. Reconstruction volume

surface is a uniformly sampled cube. This does not work in the case of the Sun

because of its spherical shape. The zero disparity surface we wish to obtain is the

surface of the Sun. The reconstruction volume that we obtain is shown in Fig. 5.2.

Since we rectified the images beforehand we can take one epipolar line at a time. In

Fig. 5.3 you can see the grid generated by two epipolar lines.

When we rectified the images we said that points on the surface of the Sun are

defined by the intersection of ray i from STEREO-A and ray i from STEREO-B,

corresponding to a disparity of zero. The points which are k layers above the surface

are defined by the intersection between ray i from STEREO-A with ray i − k from

STEREO-B, k < i. This means that the valid region of reconstruction (on and above

the surface of the Sun) is given by the lower half of the square (shown as the shaded

region in Fig. 5.3). If each epipolar line has n points there are n2 points on the full

grid and n(n+ 1)/2 in the shaded region.
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Figure 5.3. Reconstruction grid. Gray is valid region.

Note that the diagonal represents a line on the surface of the Sun and each line

parallel to it is further and further from the Sun. The point labeled as 4 has the

largest distance from the Sun and is potentially very far. Since the region of interest

does not span further than 2RSun it does not make sense to reconstruct the whole

possible volume so we will just take up to some maximum distance from the Sun.

The new reconstruction grid is shown as light gray in Fig. 5.3.

5.5 The minimization problem

The satellite images IA and IB, represent the constraints to the problem. They are

the sums along columns and rows of the reconstruction grid. If we collect all the

points in the grid in the vector x = (x1, x2, . . . , xn) we can represent our constraints
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as two matrix equations, Srowx = LA and Scolx = LB:

Srow =


In

0 0 0

· · ·

0 0

In−1

0 0 0 0

In−2

0 0 0

In−3

0 0

I2
0

1


(5.14)

Scol =



1 . . . 1︸ ︷︷ ︸
n

0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1︸ ︷︷ ︸
n−1

0 . . . 0

...
...

0 . . . 0 0 . . . 0 1


(5.15)

where Srow and Scol do a sum along rows and columns of our grid and LA, LB are the

epipolar lines in our two views. If we stack Srow and Scol on top of each other into A

and also stack LA and LB into B we get our constraints in the form: Ax = B. The

matrix has size 2n× n(n+ 1)/2, giving an underconstrained problem.

With this we can express the reconstruction as a constrained optimization prob-

lem:

minimize f(x)

subject to Ax = B, x > 0

The second positivity constraint, x > 0 comes from the fact that all the light

gets transmitted and never absorbed. The function f(x) penalizes certain unwanted

features of the solution like: low sparsity, high spatial discontinuity, etc.

In practice the problem might be unfeasible (the constraints cannot be satisfied)

since the images contain noise and the image formation model is not ideal. In this
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case we have two choices: eliminate bad constraints or loosen the constraints. To

eliminate the unsatisfiable constraints we do a first stage optimization:

minimize ‖t‖

subject to Ax = B + t, x > 0

The new variable t is a vector with 2n entries. We remove one by one columns

from A that correspond to the greatest entry in t until the equation Ax = B has a

solution. In practice this is not very desirable since we are loosing constraints to an

otherwise weakly constrained problem. We can however loosen the constraints and

modify the minimization problem:

minimize f(x) + I(‖t‖)

subject to Ax = B + t, x > 0

I(x) =

 0 x = 0

∞ x 6= 0
(5.16)

The indicator function, I makes it very costly to break the constraints.

5.6 Cost functions

Next we have to investigate possible cost functions. If the cost function is convex,

there are a lot of very efficient methods for solving these minimization problems. For

a proper background in convex optimization refer to [45]. One of the most popular

choice for cost functions are norms. These functions have nice continuity properties

and most importantly, they are convex. The convex cost functions will be minimized

in practice with the CVX package for Matlab [46].

5.6.1 Choosing the norm

Any function f : Rn → R that has two properties can be considered as a norm

function:
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• Positive scalability f(ax) = ‖a‖f(x)

• Triangle inequality f(x+ y) ≤ f(x) + f(y)

As a consequence of the previous two properties, follows that f(x) = 0 iff x = 0 and

f(x) > 0,∀x ∈ Rn
∗ . Common choices for norm functions are:

• lp norm defined as: lp(x) = |x|p

• deadzone-linear with deadzone width a > 0

φ(x) =

 0 |x| ≤ a

|x| − a |x| > a
(5.17)

• log barrier with limit a > 0

φ(x) =

 −a2 log (1− (u/a)2) |x| ≤ a

∞ |x| > a
(5.18)

In Fig. 5.4 you can see the l1, l2 norms, the deadzone linear with a = 0.25 and the

log-barrier with a = 1. These cost functions express the penalties we wish to impose

on the current errors. Note that if we scale these functions, the final error will be

scaled itself, but the solution towards which it converges is identical. The ratio of the

penalty for large to small errors gives us the behavior of the cost function.

For residuals in (−1, 1) the l1 function penalizes more than the l2 norm. This

means that large errors on certain components of x are accepted more than small

errors. On the other hand the l2 norm penalizes a lot large errors compared to small

ones. The deadzone error function penalizes just errors that are bigger than some

amount linearly. The log-barrier function is similar to the quadratic error for small

errors, but has infinite penalty for values larger than a (errors larger than a are

unacceptable).
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Figure 5.4. Norm functions

5.6.2 Increasing sparsity

Generally we prefer solutions where the matter is as packed as possible and still obey

the constraints, meaning we prefer the solution with a high sparsity pattern.

A common practice for learning algorithms where sparsity is a must, is to use

the l0 norm defined as
∑

i x
0
i and define 00 = 0. This is just a measure of number

of non-zero elements of x. Is is an abuse of language calling it norm since it is not

positive scalable. Also this function is not convex.

Another way to enforce sparsity is by minimizing the l1 norm. Since it “dislikes”

small errors, it is likely to put small residues to zero and accept large ones. However

this is not the optimal solution since medium errors are still accepted. To improve

we could employ an iterative minimization scheme of a weighted l1 norm:

1. initialize W = 1
x0

2. minimize |Wx| with constraints

3. W = 1
x
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with x0 being an initial solution which we want to increase sparsity (can be with

initial weights all being 1). We iterate between steps 2 and 3 until the sparsity does

not improve anymore. We consider a component as being zero when it drops below

a certain threshold. Notice that components which are small in the solution will

cost a lot and will be eliminated in the next iteration if possible since their weight

will be quite high. This iterative scheme does not guarantee that the cost for the

solution drops continuously from one iteration to another, but it is guaranteed that

the sparsity of the solution will always increase.

An alternative is to maximize the infinity norm l∞ = max(xi) with constraints.

This is a concave function. We generally choose our cost function as a sum of convex

functions. The sum of convex and concave functions is not convex, creating a very

hard minimization problem.

There exists also an analytical form for the sparsity of a vector, introduced in

[47, 48], sp : [−1, 1]n∗ −→ [0, 1]:

sp(x) =
1√
n− 1

(√
n− ‖x‖1
‖x‖2

)
(5.19)

This function has the value 0 for a constant vector. For a vector with a single non-zero

entry equal to 1 the function equals 1. This function has quite a few drawbacks. It

is neither convex, nor concave, so our simple and efficient methods do not work and

it has a discontinuity in 0n.

There are other choices for cost functions that are known to increase sparsity like

p-norms with p < 1 (including negative p’s), Shannon and Gaussian entropy. For a

comparison of these functions please refer to [49, 50].

These basic functions provide inspiration but cannot be used directly with our

“flattened” grid since there should be no interaction between certain elements (even

though they are neighbors in the “flattened” grid as they are not adjacent in our

original 2D grid). We will use as cost function the sum of costs for each row in our

2D grid.
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RESULTS

In this section we will present some practical results using the theoretical concepts

developed in the previous chapters. We will start by validating the reconstruction

techniques using some synthetic examples where the ground truth is known. As a

second step we will test the reconstruction on synthetically generated images to be

able to reproduce certain situations one would encounter on the Sun. As a last step

we will test the reconstruction on real solar images after they have been rectified.

6.1 Synthetic results

6.1.1 Known ground truth

For the synthetic examples with known ground truth we will test the following cost

functions based on: l2 norm, iterative minimization with l1 norm, and non-convex

optimization of the sparsity function from equation 5.19. If we were to apply the

previous cost functions directly on our one dimensional flattened grid, there would

be an “interaction” between nodes that are adjacent in the flattened grid but not

in the original triangular one (for example node 4 and 5 in Fig. 5.3). One simple

modification meant to exclude the non-existing interaction between nodes is to con-

sider the sum of cost functions applied to each row in the triangular 2D grid. Since

the sparsity measure is defined just for vectors with elements smaller than 1, we will

add this extra constraint. Also note that the new analytical sparsity measure takes

values in the range [0, r], where r is the number of rows (the function is the sum of

row sparsities each taking values in the range [0, 1]).

The first synthetic example with known ground truth is shown in Fig. 6.1. The
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Figure 6.1. Ground truth. Sparsity of 1.31

0.5 - - - - 0.5

0.5 - - - 0.31 0.18

1 - - 0.45 0.33 0.2

1 0.29 0.35 0.24 0.1

1 0.5 0.2 0.19 0.1 0

0.5 0.5 1 1 1

Figure 6.2. l2 norm minimization. Sparsity of 3.28

first step is getting a solution to our problem that obeys the constraints, which will get

refined in the next steps. In Fig. 6.2 you can see the solution when we minimize with

the l2 norm. This solution respects the constraints but has very low sparsity (matter

is very spread). We take this solution and we iteratively minimize the weighted l1

norm to increase sparsity. After 4 iterations the result is shown in Fig. 6.3. Notice

that this has exactly the same sparsity measure as the ground truth (number of

non-zero entries), but the solution is different, but equivalent since the problem is

underconstrained. Next we will minimize the sparsity function directly with a non-

convex minimizer. The result is shown in Fig. 6.4. Notice that this solution satisfies

the same constraints as the true solution and its sparsity is even higher than ground

truth’s.
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Figure 6.3. Iterative minimization with the weighted l1 norm. Sparsity of 1.31
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Figure 6.4. Minimization with the non-convex sparsity measure. Sparsity of 0.74
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It is easy to observe that the current sparsity enforcement model cannot impose a

certain sparsity structure, nor the amount of sparsity each solution has. There exist

a lot of equivalent solutions (that obey the same constrains) since the problem is

underconstrained, even sparser than the ground truth. In order to improve on this

reconstruction, one needs to make more assumptions on the solution (smoothness,

structure, etc).

6.1.2 The torus dataset

The next synthetic data experiment is on a synthetically generated half torus against

a flat background, as illustrated in Fig. 6.5. This is interesting as it tests the possi-

bility of reconstructing discontinuities, holes inside the semi-transparent object. The

minimization problem for this dataset will have the following form:

minimize α‖t‖+ βf(x)

subject to Ax = B + t, x > 0

The addition of t makes the problem much easier to minimize, as constraints are

not always satisfiable. If the parameter α is much bigger than β the final effect is

the same without using t, but convergence is faster. The non-convex minimization

problem using directly the sparsity measure is prohibitively slow making it useless

for any image larger than 20 pixels.

We test the results using the l2 norm and iterated minimization with weight l1

norm (the non-convex optimization using the analytical sparsity measure will be

omitted).

The results of the l2 cost function can be seen in Fig. 6.6. As one might expect

the solution has extremely low sparsity. There is no need to impose any smoothing

conditions as the solution is extremely smooth to start with. Notice that the “hole”

inside the half torus cannot be reconstructed as it introduces an strong discontinuity.

Next we will try to iteratively minimize with the l1 norm. Since this produces

extremely sparse solutions and highly discontinuous at the same time, we need to
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Figure 6.5. Torus dataset: top - the two input views, bottom - sideways view

Figure 6.6. Torus reconstruction with l2 norm
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Figure 6.7. Torus reconstruction with iterative minimization

impose as well some smoothing constraints. The lack of smoothing will produce

solutions that look very much alike clouds of points. With smoothing, the individual

points will be joined together as much as possible. A simple smoothing criteria

includes the sum of difference between neighbors along the rows and columns inside

our 2D grid. The results can be seen in Fig. 6.7. It is obvious that this solution is

much sparser than the previous one. The algorithm converges towards the filiform

structures due to the combination of smoothness/sparseness. The vertical and oblique

streaks one can observe outline the rays casted from the cameras. In both Fig. 6.6

and 6.7 the reconstruction yields a triangular structure rather than a full torus since

it is generally more compact (higher sparsity). The combination of smoothness and

sparsity leads to a hysteresis behavior.

6.2 Solar images

In order to test our reconstruction methods on real solar data we will choose a pair

of images from STEREO from the 28th July 2007 taken in the 171Å band. Since the

images are fairly big, we will reconstruct just a 200 pixel wide window that contains

activity. At this time, the separation was about 22◦. This dataset produces the best
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Figure 6.8. Left: STEREO A, Right: STEREO B

results we have obtained to date. We will also try another dataset from the 10th

October 2007 to test the effect of bigger separations between satellites. The original

images from the STEREO pass through the following stages to yield a reconstruction:

1. compute the camera and correction matrices for internal parameters

2. rectify images

3. reconstruct in 3D a region of the rectified image

6.2.1 Reconstruction

The rectified images are shown in Fig. 6.8. You can notice in the lower part of the

image a solar filament that joins two regions that are close together. For solar data

we will use the cost function based on the l1 norm. The iterative minimization is

not very suitable as it produces a solution that is too sparse considering the smooth

nature of the real data and so far we have not been able to control the degree of

sparseness or a certain sparsity pattern of the resulting solution.

In Fig. 6.9 you can see the reconstruction using the l1 norm. While the top view

looks remarkably good, you can notice that the loops are reconstructed as columns.
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Figure 6.9. Top and oblique views of the reconstruction

Rather than having loops that are connected to the solar surface only at the endpoints,

we obtain a solution which is comprised of vertical structures that span the whole

hight of the loop. The “hole” inside the torus-like loops represents a discontinuity

which is impossible to obtain unless the shape of the structures gets modeled.

We also tried to reconstruct a dataset from the 10th October 2007. At this point

the separation between the satellites is almost 40◦. For this dataset we also tried

a reconstruction using at the same time all three wavelengths that get formed high

enough inside the solar atmosphere to show some motion parallax. To do this we just

stacked the three epipolar lines on the right hand side of our system and replicated

three times the matrix A from equation 5.5. From a physics standpoint this does not

make a lot of sense since the same feature might have different apparent displacements

between the two views depending on the temperature of the feature. We do this in

hope to enforce three times more constraints on the problem. In Fig. 6.10 you can

see the rectified images in the three wavelengths.

In Fig. 6.11 you can see the results from the newer dataset using the l1 norm. It

is apparent that this reconstruction is not as good as the previous one. One of the
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Figure 6.10. Left: STEREO A, Right: STEREO B
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Figure 6.11. Top and oblique view of the reconstruction

reasons is that the bigger separation made it much harder to match regions. Actually

one of the reasons for which the satellites were placed on different orbits is to try out

different separation angles to determine the optimal angles for reconstruction. This

dataset is more complicated than the previous one since there are a lot of features

under the loops. The reconstruction barely resembles the input images even when

regarded from the most favorable angle.

6.2.2 Motion segmentation

Another interesting application of this project is to segment the featured from the

background so that another more specialized reconstruction method can be applied as

a second stage. If you remember our reconstruction grid from Fig. 5.3, the diagonal

represents the matter on the surface of the Sun. Due to our rectification assumptions,

feature on the surface of the Sun should not exhibit any parallax. If we substract

from images of the satellites A and B, the image of the stationary background, we

should be able to have just the feature from the two views. This is shown in Fig.

6.12
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Figure 6.12. Left: Reconstruction of the surface of the Sun, Right: STEREO A

minus the surface showing just the moving parts

There is no simple measure of “goodness of fit”. One possible visual estimate

of the quality of the reconstruction can be obtained by comparing the two rectified

views to identify the moving parts and compare it with our segmention results.
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DISCUSSIONS AND CONCLUSIONS

The main contributions of this project included a rectification/high precision

alignment method for satellite imagery and a stereoscopic reconstruction method

designed for transparent objects.

The reconstruction method is guaranteed to rectify any camera configuration and

always giving finite output images. Since the rectification surface is a sphere, the

straight lines do not get preserved. The reconstruction grid induced by the rectifica-

tion method has two important properties:

1. the zero disparity surface is a sphere with radius RSun.

2. the reconstruction grid is given by the intersection of rays cast from each view.

A consequence of the first property is that objects on the surface of the Sun

do not exhibit any motion parallax in the rectified images. The second property

guarantees that all grid points inside the reconstruction volume always project onto

image pixels, without the need to interpolate. This makes density computations very

easy to handle.

The reconstruction method proposed can work with arbitrary transparent images

that have been rectified in a similar fashion (objects with motion parallax above an

immobile zero disparity surface). The reconstruction volume is limited to one side of

the zero disparity surface (with a modified reconstruction grid one can reconstruct

both sides), since the zero disparity surface is assured to be opaque.

The method gives a dense reconstruction and makes no assumptions on the shape

of reconstructed objects. All a priori information can be introduced in a natural way
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as constraints or cost function. Images that are taken at different times can be used

to provide extra constraints on the solution.

The method is fairly fast. The Matlab implementation using 100x100 images takes

less then 3 minutes to reconstruct using the l1 norm.

7.1 Further developments

The generality of the algorithm hinders the quality of the solutions. One of the

ways to improve the solutions would be to fit some physical model to the data such

as magnetic field extrapolation. This would however most likely not produce dense

reconstructions as just the modeled phenomenon would be reconstructed.

To provide extra constraints to the problem one could add more images of the

two satellites taken at different times. For this the algorithm would require two small

modifications:

• due to the rotation of the Sun around its own axis the features will change

position over time. We could estimate the amount of rotation for a region and

update the translation of the satellites such that the surface of the Sun remains

static.

• one could replace the 4 input raw images by reconstructed electron and temper-

ature densities. While intensity values in original images change quickly as there

are bursts of activity, the temperature and electron density does not change as

fast. This would greatly improve the robustness of the reconstruction.

An extra constraint could be provided by a third view given by SOHO. Unfortu-

nately it is impossible to rectify triplets of images at the same time unless they share

the same baseline. This is unfortunately not the case for SOHO, but the method could

be modified to accept two rectified pairs (SOHO/STEREO A and SOHO/STEREO

B).
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All smoothing so far is applied only along epipolar lines. In order to smooth

between epipolar lines one would need to iterate between a stage of constrained

minimization and inter epipolar line smoothing.
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