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ABSTRACT

We investigate whether epipolar misalignment can be automatically detected and corrected without explicit knowledge
of point correspondences. In this regard, the work is closely related to the problem of structure-and-motion from two
frames. However, the motion estimation described here is independent of any estimation of the structure of the scene
and consequently is expected to be significantly more robust than structure-and-motion algorithms in which the number of
unknowns is proportional to the number of pixels in the image. Instead, it may be thought of as forming the basis of a motion-
without-structure algorithm, i.e. the solution requires neither knowledge nor estimation of structure or associated properties
such as correspondences or flow fields, in order to estimate motion. Of course, structure may be determined by subsequent
processing. In particular, we present a method for recovering camera motion for the special cases of (1) known rotation
and (2) known translation. The method does not require optical flow fields, feature point correspondences or intensity
derivatives. Instead, it relies on a simple statistical characteristic of neighbouring image intensity levels. Specifically, that
the variance in intensity between two arbitrary points in an image increases (approximately) monotonically with distance
between the two points. Then, it is shown that a simple measure taken across the image can yield a very robust measure
of the likelihood of an estimated motion. The likelihood measure allows motion estimation to be cast as an efficient search
over the space of possible rotations or translations. The relation between image statistics (textures, etc.) and the accuracy
of the estimated motion is discussed and experimental results on real images are presented.

1. INTRODUCTION

Much work has been done on trying to recover camera motion parameters from image pairs. In almost all cases, either
optical flow or feature points correspondence are used as the initial measurements. In the first case, some inherent problems
(aperture, large motions, etc.) related to optical flow computation, suggests that errors can never be lowered to a negligible
level (see [1, 2, 3, 4]). Even methods using the intensity derivatives directly or normal flow, as in [11, 12, 8, 4, 5, 6, 7], suffer
from high noise sensitivity. For feature-based methods, the reliable selection and tracking of meaningful feature points is
generally very difficult, see [8, 9, 10].

All prior methods of egomotion implicitly or explicitly determine the structure present in the scene. For example,
while feature based methods compute a motion estimate directly, the structure is implicitly available given the feature
correspondences. Direct methods explicitly estimate both the egomotion and structure, typically in an iterative fashion,
refining first the motion and then the structure estimates, etc. Thus, good motion estimation appears to require good
structure estimation (or at least point correspondence estimation). In contrast, we propose a paradigm that might be
called motion-without-structure that allows the recovery of egomotion independently of any structure or correspondence
estimation. The benefit of this is that there are only and exactly five unknown motion parameters to be estimated. As such,
we expect that such an approach should be both robust and accurate. Initial experimental results support this.

The algorithm relies on statistically modelling the image behavior in the neighbourhood of a point, as discussed in
Section 2. This model is then used to estimate the likelihood of an assumed camera motion. Determining the true motion
is then accomplished by searching for the maximum likelihood estimate over the space of translations or rotations. The
search is straightforward since we show in Section 3.1 that the function to minimize has only one minimum (which is the
solution), provided the image is well behaved, i.e. the variance between neighboring intensity points increases monotonically
with the distance between the points. Prior work by the authors [13] proposed using the difference between histograms
computed along assumed correspondence epipolar lines as a likelihood function. This statistical measure is very effective in
determining the rotational component of ego-motion. However, epipolar histograms are not always a reliable measure of the
likelihood of a translational motion. Section 4 presents experimental results from a comprehensive evaluation based on the
JISCT stereo database [14].
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Figure 1: Intensity distribution for a chosen horizontal distance & = (4, 0).

2. A STATISTICAL MODEL OF IMAGE INTENSITIES

A simple statistical model is used to represent image behavior around a point. Consider the intensity distribution in the
neighbourhood of a given point g, in a single image A. We assume that the probability of a point I4(§+ ¢) having intensity
a conditioned on a given point p with intensity b has a Normal distribution, assuming the distance between the two points

is sufficiently small. Thus we have
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where G|, 25,(2) is a Gaussian distribution with mean b and variance 02(8). The variance o(8) is a function of the

distance ||8]|. This property is intuitively related to the correlation present in a scene and is experimentally verified next.
For a given image, we can evaluate the parameters of the distributions, namely *(§), for all possible separations § within
a selected neighbourhood. For a given §, we wish to evaluate the distribution of the samples
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taken over all p; points in the image. Note that the mean of this sample is always 0. The variance 02(5) is obtained from

the samples as
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where n is the number of samples taken.

In order to determine the validity of the Gaussian assumption. We calculated these statistics for a variety of images.
Figure (1) shows the distribution of intensities a fixed horizontal distance, 5= (4,0), from an arbitrary image point. It is
evident that the Gaussian model of Equation (1) is a good approximation to the experimental curve of Figure (1).

Once the variance is estimated for all & such that ||5'|| < Pmaxz Where Tmqz is the maximum size of the neighbourhood,
we have a useful global statistic that describes the local behavior of image intensities. This statistic is experimentally
determined by directly measuring the distribution of intensity values in the neighbourhood of all pixels in an image. For
the images shown in Figure 2, the variance of the distributions are shown in Figure 3 for a neighbourhood of 50 pixels
around the reference point. The darker a point, the smaller the variance. The mean of the distributions is not shown
here since it is always very close to the predicted value (the value of the reference pixel). Figure 3 indicates that the
variance increases approximately monotonically with distance, with a single minimum centered at 5= (0,0). This property
is exploited to derive the likelihood measure in Section 3. Note, also, that while the relationship between variance and
distance is monotonically increasing, it is not isometric, indicating that intensities are more correlated in certain directions,
as expected. For example, the “Parking meter” of Figure 2A is clearly more correlated in the vertical direction and this is
evident in Figure 3A in which the variance increases more slowly with distance in the vertical direction.

Our experimental observations indicate that most natural images are well behaved. Only images featuring highly
correlated textures or that are highly non-stationary generally present badly-behaved variance functions (non-monotonic,
multiple minima). By examining how well behaved the variance function is, it should be possible to measure how accurate
the method is.

3. EVALUATING ALIGNMENT

We propose to determine the translation or rotation between two frames via an efficient search. If the rotation is known,
then it is necessary to evaluate the likelihood of an assumed translation T, and vice versa for rotation R. For a given point
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Figure 2: Four images from the JISCT database. A) parking meter, B) birch, C) shrub, D) tree.

/

40 \ 40 7 ;\\
0 0
-20 -20
40\ RGN o
-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40
A) B) &) D)

Figure 3: Variance functions o2(3) for the images A) parking meter, B) birch, C) shrub, D) tree. Distances along the
axis are in pixels. Darker points have smaller variance.

I4(p) in image A and a camera motion, we can compute the corresponding point Ip(Ps) (the zero-disparity point) in image
B that has infinite depth, as well as the focus of ezpansion (FOE), see Figure 4. A known translation but unknown rotation
implies that the FOE is known but the point I5(Ps) has unknown location. Conversely, a known rotation but unknown
translation implies that the corresponding point Iz (P ) in image B is known but the location of the FOE is not. Since we
do not know the real depth of point I4(p), we can only assume that the actual corresponding point Ig(p.) is somewhere in
the neighbourhood of point I (P ), depending on the unknown depth z. In fact, it is always located on the line joining the
true Ip(Ps) and the true focus of expansion. Since the points I4(p) and (the unknown) Ig(p.) correspond, the variance
function around Ig(p.) should be identical to that of I4(p).

For the case of unknown translation, a line segment, u, of length 7,4, is selected starting at the zero-disparity point
I5(Px) and oriented toward the candidate FOE. The value of 7,42 is chosen to reflect the maximum disparity expected. A
candidate FOE provides a candidate translation and vice versa. If we select a number of sample intensity values u; along
the segment u and define the error measure e, as
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Figure 4: Basic geometry for known rotation. For a given Ia(p), its unknown corresponding point Ig(p.) is on the line
joining Ip(Ps) and the FOE.
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Figure 5: Analytic error function for a typical variance function.

then e, will be a minimum when the segment u contains Ig(f.), and thus points towards the FOE. An example of the error
function e, is shown in Fig. 5. For a typical variance function defined as
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an analytic error curve is computed for segments over an interval of 0° to 90° and shows a single minimum at 45°, the angle
at which the line segment is correctly oriented towards the true FOE. This minimum exists and is unique when the variance
function of the images is well behaved. Section 3.1 discusses this point in detail. We can now use this property to estimate
if a candidate FOE is good. If we select a number of points I4(p;) and compute the sum of the individual line segment
error measures eq; where g; is the segment starting at 74 (p;) and pointing toward the candidate FOE, we expect all these
error measures to be simultaneously a minimum if this candidate FOE is indeed the true FOE. We thus use the sum of the
individual line segment error measures as a global estimate of the likelihood of the FOE. In the case of well behaved images
(see below) we expect only one minimum and can do a simple search for the exact FOE based on gradient descent.

It is easy to change this method to estimate rotation by fixing the FOE (known translation) and selecting candidate
points Ip(Pos) associated with candidate rotations.

3.1. Existence of a single minimum

In this section we show that for well behaved images, a single minimum of the error measure e, of Equation 3 is observed
when a segment u contains Ig(f,) and joins the true zero-disparity point and the true FOE. We define a well behaved image
as one that possesses a monotonically increasing variance function. Since by definition this function always has a global
minimum at (0,0), this condition is enough to insure that the likelihood function possesses a unique minimum. This is
demonstrated next.

Consider a segment u in the neighbourhood of p., starting at po, and containing n sample intensities as depicted
in Figure 6. Then from the distribution property we can say that each sample behaves like a random variable u; with
distribution
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where dli is the distance (z,y) from sample u; to position 7., the unknown location of the corresponding point to I4(p).
From Equation 3, the error measure e, is a random variable defined as
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with an expectation value defined as
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Suppose we now take a second segment v starting also at P, but closer to the point p,. A set of samples v; is chosen
with the same sampling as segment u. The error measure e, is defined as the random variable

ev =Y (vi— La(p)’
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Figure 6: Error function for two segments u and v. When v is closer to p. then wu, its expectation is smaller for a well
behaved variance function. A) Unknown translation. B) Unknown rotation.

which has an expected value
E(e,) =Y o’(dy,)
i=1

where civl is the distance (z,y) from sample v; to position p,. We now wish to show that the expectation of e, is always
smaller then E(e,). First, it is straightforward to see that
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since v is a rotated version of u toward P, except for the special pathological case where P, = Pos. Second, the variance
function o (d) is assumed to be monotonically increasing with ||d]| from F.. From these two observations, we can immediately
conclude that

o (dy,) < o*(dy,) , Vi
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It then follows that

n n
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which shows that as we get closer to the segment containing Ig(p.), the expected error value gets smaller until it reach
a minimum when the candidate FOE correspond to the true FOE. As long as the variance function is monotonic, this
minimum is guaranteed to exist and is unique.
The same procedure is applied for rotation estimation, just reversing the FOE and the zero-disparity point.

4. EXPERIMENTAL RESULTS

An number of experiments where conducted on natural images, for different ranges of camera translation and rotation. For
translation estimation, Figure 7 shows the error functions obtained for the images of Figure 2. The likelihood is shown
for various angles' (£45°) around an arbitrary translation which, in this case, is pure horizontal displacement. In the four
cases, the minimum should be located in the center at (0°,0°). At this point, we observe an irregularity which is an artifact
of bi-cubic intensity interpolation. The error in the location of the likelihood minimium is between 1 and 3 quantization
units, corresponding to 2.25 to 6.75 degrees of accuracy. These results compare favorably with other methods [4, 8] which
give a FOE localization error of around 9 degrees. Moreover, it is believed that these results would be improved if a finer
quantization search had been performed.

For rotation estimation, Fig. 8 shows the error functions for a range of +45° around three differents axis (X, Y, and Z).
Here, the minimum should and is observed to be at 0°. It should be noted that for large rotation around the X or Y axis,
the likelihood function becomes noisy because of the small overlap between the images.

For all these results, around 4% of the points of the images are randomly selected to yield between 2500 and 3000 (9700
points for the tree image) line segments for likelihood estimation. Up to 25 samples are taken along each segment and used

ISince translation is only known up to a scale factor, it is represented as a unit vector on a sphere, which can be characterized by
two angles. A purely horizontal motion is represented by (0°,0°), a purely vertical motion is denoted by (0°,90°) and a motion along
the optical axis by (90°,0°).



Figure 7: Translation error functions for images A) parking meter, B) birch, C) shrub, D) tree. The position of the FOE

should be at (0°,0°). Ligher points show smaller error. The axis represents rotation in degrees from reference translation

(1,0,0), see footnote. The cross denotes the observed minimum of the likelihood function.

Figure 8: Rotation error functions for images A) parking meter, B) birch, C) shrub, D) tree.
range of £45° around the X, Y, and Z axis are presented. The true rotations are located at 0°.
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in Equation 2 to compute the likelihood. For most images, only a few hundred points are needed to generate useful results
that can be used to quickly find a good estimate. By increasing the number of points used, the accuracy of the estimation
is also increased.

5. CONCLUSION

We described a new method to find either the translational or rotational motion between two frames assuming the other
component of motion is known. The problem is posed as a search for the most likely motion, and as such, a likelihood
measure is required to evaluate each candidate motion. A likelihood measure was derived based on the sum of squared
distance (SSD) between a point p in image A and a series of points in image B that lies on a line joining p with the
candidate FOE. It was shown that this likelihood function has a clearly defined minimum which is easily located by gradient
descent provided the two images are well-behaved, i.e. that the variance in intensity between two points monotonically
increases with their distance apart.

Experimental results on the SRI JISCT stereo database support the monotonic variance assumption in almost all
cases. The likelihood function was also shown to be well behaved with a clearly defined global minimum over all trans-
lations/rotations. Translation estimates were within 2.25 to 6.72 degrees of their true values and rotation estimates were
correct within the limits of the quantization error, indicating that very accurate estimation may be possible. A significant
portion of the translational error is expected to be due to the coarse quantization, 2.25°, of the search. More work is,
however, needed to evaluate the accuracy of the method over a wide class of scenes.

Currently, we have restricted the search to either a three dimensional search for rotation or a two dimensional search
for translation. In principle, a full five dimensional search for all components of motion is possible. Preliminary results
from such a process suggest that the translational estimation can be decoupled from the rotational estimation and that very
accurate motion estimates can be determined by an iterative process that first estimates rotation, then uses this estimate in
the determination of the translation, etc. Only a small number of iterations appears necessary. We believe that the paradigm
of motion-without-structure can provide a robust and accurate algorithm to estimate the ego-motion between two frames.
It is our hope that this paradigm will prove superior to feature-based and indirect and direct methods of shape-and-motion
estimation since neither optical flow, intensity derivatives or feature correspondence are needed.
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