
STATISTICAL MODELLING OF EPIPOLAR MISALIGNMENTIngemar J. Cox and S�ebastien RoyNEC Research Institute4 Independence WayPrinceton, NJ 08540, U.S.A.ingemarjsebastien@research.nj.nec.comABSTRACTWe investigate whether epipolar misalignment can be automatically detected and corrected without explicit knowledgeof point correspondences. In this regard, the work is closely related to the problem of structure-and-motion from twoframes. However, the motion estimation described here is independent of any estimation of the structure of the sceneand consequently is expected to be signi�cantly more robust than structure-and-motion algorithms in which the number ofunknowns is proportional to the number of pixels in the image. Instead, it may be thought of as forming the basis of a motion-without-structure algorithm, i.e. the solution requires neither knowledge nor estimation of structure or associated propertiessuch as correspondences or 
ow �elds, in order to estimate motion. Of course, structure may be determined by subsequentprocessing. In particular, we present a method for recovering camera motion for the special cases of (1) known rotationand (2) known translation. The method does not require optical 
ow �elds, feature point correspondences or intensityderivatives. Instead, it relies on a simple statistical characteristic of neighbouring image intensity levels. Speci�cally, thatthe variance in intensity between two arbitrary points in an image increases (approximately) monotonically with distancebetween the two points. Then, it is shown that a simple measure taken across the image can yield a very robust measureof the likelihood of an estimated motion. The likelihood measure allows motion estimation to be cast as an e�cient searchover the space of possible rotations or translations. The relation between image statistics (textures, etc.) and the accuracyof the estimated motion is discussed and experimental results on real images are presented.1. INTRODUCTIONMuch work has been done on trying to recover camera motion parameters from image pairs. In almost all cases, eitheroptical 
ow or feature points correspondence are used as the initial measurements. In the �rst case, some inherent problems(aperture, large motions, etc.) related to optical 
ow computation, suggests that errors can never be lowered to a negligiblelevel (see [1, 2, 3, 4]). Even methods using the intensity derivatives directly or normal 
ow, as in [11, 12, 8, 4, 5, 6, 7], su�erfrom high noise sensitivity. For feature-based methods, the reliable selection and tracking of meaningful feature points isgenerally very di�cult, see [8, 9, 10].All prior methods of egomotion implicitly or explicitly determine the structure present in the scene. For example,while feature based methods compute a motion estimate directly, the structure is implicitly available given the featurecorrespondences. Direct methods explicitly estimate both the egomotion and structure, typically in an iterative fashion,re�ning �rst the motion and then the structure estimates, etc. Thus, good motion estimation appears to require goodstructure estimation (or at least point correspondence estimation). In contrast, we propose a paradigm that might becalled motion-without-structure that allows the recovery of egomotion independently of any structure or correspondenceestimation. The bene�t of this is that there are only and exactly �ve unknown motion parameters to be estimated. As such,we expect that such an approach should be both robust and accurate. Initial experimental results support this.The algorithm relies on statistically modelling the image behavior in the neighbourhood of a point, as discussed inSection 2. This model is then used to estimate the likelihood of an assumed camera motion. Determining the true motionis then accomplished by searching for the maximum likelihood estimate over the space of translations or rotations. Thesearch is straightforward since we show in Section 3.1 that the function to minimize has only one minimum (which is thesolution), provided the image is well behaved, i.e. the variance between neighboring intensity points increases monotonicallywith the distance between the points. Prior work by the authors [13] proposed using the di�erence between histogramscomputed along assumed correspondence epipolar lines as a likelihood function. This statistical measure is very e�ective indetermining the rotational component of ego-motion. However, epipolar histograms are not always a reliable measure of thelikelihood of a translational motion. Section 4 presents experimental results from a comprehensive evaluation based on theJISCT stereo database [14].PUBLISHED IN INTERNATIONAL WORKSHOP ON STEREOSCOPIC AND THREE DIMENSIONAL IMAGING(IWS3DI'95), SANTORINI, GRECE, (P. 115-121)S�ebastien Roy is visiting from Universit�e de Montr�eal, D�epartement d'informatique et de recherche op�erationnelle, C.P. 6128, Succ.Centre-Ville, Montr�eal (Qu�ebec), Canada, H3C 3J7
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Figure 1: Intensity distribution for a chosen horizontal distance ~� = (4; 0).2. A STATISTICAL MODEL OF IMAGE INTENSITIESA simple statistical model is used to represent image behavior around a point. Consider the intensity distribution in theneighbourhood of a given point ~p, in a single image A. We assume that the probability of a point IA(~p+~�) having intensitya conditioned on a given point ~p with intensity b has a Normal distribution, assuming the distance between the two pointsis su�ciently small. Thus we haveP (IA(~p+ ~�) = a j IA(~p) = b) = G[b;�2(~�)](a) = 1p2��2(~�)e�(a�b)2=2�2(~�) (1)where G[b;�2(~�)](x) is a Gaussian distribution with mean b and variance �2(~�). The variance �2(~�) is a function of thedistance k~�k. This property is intuitively related to the correlation present in a scene and is experimentally veri�ed next.For a given image, we can evaluate the parameters of the distributions, namely �2(~�), for all possible separations ~� withina selected neighbourhood. For a given ~�, we wish to evaluate the distribution of the samplessi(~�) = IA(~pi + ~�)� IA(~pi) ; 1 � i � ntaken over all ~pi points in the image. Note that the mean of this sample is always 0. The variance �2(~�) is obtained fromthe samples as �2(~d) = 1n� 1Xn si(~�)2 = 1n� 1Xn IA(~pi + ~�)� IA(~pi) (2)where n is the number of samples taken.In order to determine the validity of the Gaussian assumption. We calculated these statistics for a variety of images.Figure (1) shows the distribution of intensities a �xed horizontal distance, ~� = (4; 0), from an arbitrary image point. It isevident that the Gaussian model of Equation (1) is a good approximation to the experimental curve of Figure (1).Once the variance is estimated for all ~� such that k~�k � rmax where rmax is the maximum size of the neighbourhood,we have a useful global statistic that describes the local behavior of image intensities. This statistic is experimentallydetermined by directly measuring the distribution of intensity values in the neighbourhood of all pixels in an image. Forthe images shown in Figure 2, the variance of the distributions are shown in Figure 3 for a neighbourhood of 50 pixelsaround the reference point. The darker a point, the smaller the variance. The mean of the distributions is not shownhere since it is always very close to the predicted value (the value of the reference pixel). Figure 3 indicates that thevariance increases approximately monotonically with distance, with a single minimum centered at ~� = (0; 0). This propertyis exploited to derive the likelihood measure in Section 3. Note, also, that while the relationship between variance anddistance is monotonically increasing, it is not isometric, indicating that intensities are more correlated in certain directions,as expected. For example, the \Parking meter" of Figure 2A is clearly more correlated in the vertical direction and this isevident in Figure 3A in which the variance increases more slowly with distance in the vertical direction.Our experimental observations indicate that most natural images are well behaved. Only images featuring highlycorrelated textures or that are highly non-stationary generally present badly-behaved variance functions (non-monotonic,multiple minima). By examining how well behaved the variance function is, it should be possible to measure how accuratethe method is. 3. EVALUATING ALIGNMENTWe propose to determine the translation or rotation between two frames via an e�cient search. If the rotation is known,then it is necessary to evaluate the likelihood of an assumed translation T , and vice versa for rotation R. For a given point



A) B) C) D)Figure 2: Four images from the JISCT database. A) parking meter, B) birch, C) shrub, D) tree.
A) B) C) D)

-40 -20 0 20 40

-40

-20

0

20

40

-40 -20 0 20 40

-40

-20

0

20

40

-40 -20 0 20 40

-40

-20

0

20

40

-40 -20 0 20 40

-40

-20

0

20

40

Figure 3: Variance functions �2(~�) for the images A) parking meter, B) birch, C) shrub, D) tree. Distances along theaxis are in pixels. Darker points have smaller variance.IA(~p) in image A and a camera motion, we can compute the corresponding point IB(~p1) (the zero-disparity point) in imageB that has in�nite depth, as well as the focus of expansion (FOE), see Figure 4. A known translation but unknown rotationimplies that the FOE is known but the point IB(~p1) has unknown location. Conversely, a known rotation but unknowntranslation implies that the corresponding point IB(~p1) in image B is known but the location of the FOE is not. Since wedo not know the real depth of point IA(~p), we can only assume that the actual corresponding point IB(~pz) is somewhere inthe neighbourhood of point IB(~p1), depending on the unknown depth z. In fact, it is always located on the line joining thetrue IB(~p1) and the true focus of expansion. Since the points IA(~p) and (the unknown) IB(~pz) correspond, the variancefunction around IB(~pz) should be identical to that of IA(~p).For the case of unknown translation, a line segment, u, of length rmax is selected starting at the zero-disparity pointIB(~p1) and oriented toward the candidate FOE. The value of rmax is chosen to re
ect the maximum disparity expected. Acandidate FOE provides a candidate translation and vice versa. If we select a number of sample intensity values ui alongthe segment u and de�ne the error measure eu as eu = nXi=1 (ui � IA(~p))2 (3)
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Figure 4: Basic geometry for known rotation. For a given IA(~p), its unknown corresponding point IB(~pz) is on the linejoining IB(~p1) and the FOE.
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Figure 5: Analytic error function for a typical variance function.then eu will be a minimum when the segment u contains IB(~pz), and thus points towards the FOE. An example of the errorfunction eu is shown in Fig. 5. For a typical variance function de�ned as�2(~�) = 2k�k2k�k2 + 50an analytic error curve is computed for segments over an interval of 0� to 90� and shows a single minimum at 45�, the angleat which the line segment is correctly oriented towards the true FOE. This minimum exists and is unique when the variancefunction of the images is well behaved. Section 3.1 discusses this point in detail. We can now use this property to estimateif a candidate FOE is good. If we select a number of points IA(~pi) and compute the sum of the individual line segmenterror measures eqi where qi is the segment starting at IA(~pi) and pointing toward the candidate FOE, we expect all theseerror measures to be simultaneously a minimum if this candidate FOE is indeed the true FOE. We thus use the sum of theindividual line segment error measures as a global estimate of the likelihood of the FOE. In the case of well behaved images(see below) we expect only one minimum and can do a simple search for the exact FOE based on gradient descent.It is easy to change this method to estimate rotation by �xing the FOE (known translation) and selecting candidatepoints IB(~p1) associated with candidate rotations.3.1. Existence of a single minimumIn this section we show that for well behaved images, a single minimum of the error measure eu of Equation 3 is observedwhen a segment u contains IB(~pz) and joins the true zero-disparity point and the true FOE. We de�ne a well behaved imageas one that possesses a monotonically increasing variance function. Since by de�nition this function always has a globalminimum at (0; 0), this condition is enough to insure that the likelihood function possesses a unique minimum. This isdemonstrated next.Consider a segment u in the neighbourhood of ~pz, starting at ~p1, and containing n sample intensities as depictedin Figure 6. Then from the distribution property we can say that each sample behaves like a random variable ui withdistribution f(ui) = G[IA(~p);�2(~dui )](ui)where ~dui is the distance (x; y) from sample ui to position ~pz, the unknown location of the corresponding point to IA(~p).From Equation 3, the error measure eu is a random variable de�ned aseu = nXi=1 (ui � IA(~p))2with an expectation value de�ned as E(eu) = E( nXi=1 (ui � IA(~p))2) = nXi=1 �2(~dui)Suppose we now take a second segment v starting also at ~p1, but closer to the point ~pz. A set of samples vi is chosenwith the same sampling as segment u. The error measure ev is de�ned as the random variableev = nXi=1 (vi � IA(~p))2
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A) B)Figure 6: Error function for two segments u and v. When v is closer to ~pz then u, its expectation is smaller for a wellbehaved variance function. A) Unknown translation. B) Unknown rotation.which has an expected value E(ev) = nXi=1 �2(~dvi)where ~dvi is the distance (x; y) from sample vi to position ~pz. We now wish to show that the expectation of ev is alwayssmaller then E(eu). First, it is straightforward to see thatk~dvik < k~duik ; 8isince v is a rotated version of u toward ~pz, except for the special pathological case where ~pz = ~p1. Second, the variancefunction �2(~d) is assumed to be monotonically increasing with k~dk from ~pz. From these two observations, we can immediatelyconclude that �2(~dvi) < �2(~dui) ; 8iIt then follows that E(ev) = nXi=1 �2(~dvi) < nXi=1 �2(~dui) = E(eu)which shows that as we get closer to the segment containing IB(~pz), the expected error value gets smaller until it reacha minimum when the candidate FOE correspond to the true FOE. As long as the variance function is monotonic, thisminimum is guaranteed to exist and is unique.The same procedure is applied for rotation estimation, just reversing the FOE and the zero-disparity point.4. EXPERIMENTAL RESULTSAn number of experiments where conducted on natural images, for di�erent ranges of camera translation and rotation. Fortranslation estimation, Figure 7 shows the error functions obtained for the images of Figure 2. The likelihood is shownfor various angles1 (�45�) around an arbitrary translation which, in this case, is pure horizontal displacement. In the fourcases, the minimum should be located in the center at (0�,0�). At this point, we observe an irregularity which is an artifactof bi-cubic intensity interpolation. The error in the location of the likelihood minimium is between 1 and 3 quantizationunits, corresponding to 2:25 to 6:75 degrees of accuracy. These results compare favorably with other methods [4, 8] whichgive a FOE localization error of around 9 degrees. Moreover, it is believed that these results would be improved if a �nerquantization search had been performed.For rotation estimation, Fig. 8 shows the error functions for a range of �45� around three di�erents axis (X, Y , and Z).Here, the minimum should and is observed to be at 0�. It should be noted that for large rotation around the X or Y axis,the likelihood function becomes noisy because of the small overlap between the images.For all these results, around 4% of the points of the images are randomly selected to yield between 2500 and 3000 (9700points for the tree image) line segments for likelihood estimation. Up to 25 samples are taken along each segment and used1Since translation is only known up to a scale factor, it is represented as a unit vector on a sphere, which can be characterized bytwo angles. A purely horizontal motion is represented by (0�; 0�), a purely vertical motion is denoted by (0�; 90�) and a motion alongthe optical axis by (90�; 0�).
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Figure 7: Translation error functions for images A) parking meter, B) birch, C) shrub, D) tree. The position of the FOEshould be at (0�,0�). Ligher points show smaller error. The axis represents rotation in degrees from reference translation(1; 0; 0), see footnote. The cross denotes the observed minimum of the likelihood function.
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Figure 8: Rotation error functions for images A) parking meter, B) birch, C) shrub, D) tree. Rotation likelihood on arange of �45� around the X, Y , and Z axis are presented. The true rotations are located at 0�.



in Equation 2 to compute the likelihood. For most images, only a few hundred points are needed to generate useful resultsthat can be used to quickly �nd a good estimate. By increasing the number of points used, the accuracy of the estimationis also increased. 5. CONCLUSIONWe described a new method to �nd either the translational or rotational motion between two frames assuming the othercomponent of motion is known. The problem is posed as a search for the most likely motion, and as such, a likelihoodmeasure is required to evaluate each candidate motion. A likelihood measure was derived based on the sum of squareddistance (SSD) between a point ~p in image A and a series of points in image B that lies on a line joining ~p with thecandidate FOE. It was shown that this likelihood function has a clearly de�ned minimum which is easily located by gradientdescent provided the two images are well-behaved, i.e. that the variance in intensity between two points monotonicallyincreases with their distance apart.Experimental results on the SRI JISCT stereo database support the monotonic variance assumption in almost allcases. The likelihood function was also shown to be well behaved with a clearly de�ned global minimum over all trans-lations/rotations. Translation estimates were within 2:25 to 6:72 degrees of their true values and rotation estimates werecorrect within the limits of the quantization error, indicating that very accurate estimation may be possible. A signi�cantportion of the translational error is expected to be due to the coarse quantization, 2:25�, of the search. More work is,however, needed to evaluate the accuracy of the method over a wide class of scenes.Currently, we have restricted the search to either a three dimensional search for rotation or a two dimensional searchfor translation. In principle, a full �ve dimensional search for all components of motion is possible. Preliminary resultsfrom such a process suggest that the translational estimation can be decoupled from the rotational estimation and that veryaccurate motion estimates can be determined by an iterative process that �rst estimates rotation, then uses this estimate inthe determination of the translation, etc. Only a small number of iterations appears necessary. We believe that the paradigmof motion-without-structure can provide a robust and accurate algorithm to estimate the ego-motion between two frames.It is our hope that this paradigm will prove superior to feature-based and indirect and direct methods of shape-and-motionestimation since neither optical 
ow, intensity derivatives or feature correspondence are needed.6. REFERENCES[1] K. Horn and B. Schunck. Determining optical 
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