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Stereo Without Epipolar Lines: A Maximum-Flow Formulation
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Abstract. This paper describes a new algorithm for solving the stereo correspondence problem with a global 2-d
optimization by transforming it into a maximum-flow problem in a graph. This transformation effectively removes
explicit use of epipolar geometry, thus allowing direct use of multiple cameras with arbitrary geometries. The
maximum-flow, solved both efficiently and globally, yields a minimum-cut that corresponds to a disparity surface
for the whole image at once. This global and efficient approach to stereo analysis allows the reconstruction to
proceed in an arbitrary volume of space and provides a more accurate and coherent depth map than the traditional
stereo algorithms. In particular, smoothness is applied uniformly instead of only along epipolar lines, while the
global optimality of the depth surface is guaranteed. Results show improved depth estimation as well as better
handling of depth discontinuities. While the worst case running time isO(n1.5d1.5 log(nd)), the observed average
running time isO(n1.2 d1.3) for an image size ofn pixels and depth resolutiond.
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1. Introduction

It is well known that depth-related displacements in
stereo pairs always occur along lines associated with
the camera motion, the epipolar lines. These lines
reduce the stereo correspondence problem to one di-
mension and the ordering constraint allows dynamic
programming to be applied (Baker, 1981; Ohta and
Kanade, 1985; Cox et al., 1996; Faugeras, 1993). How-
ever, it is clear that this reduction to 1-d is an over-
simplification of the problem, primarily required to
enforce smoothness constraints in a computationally
efficient way. The solutions obtained on consecutive
epipolar lines can vary significantly and create arti-
facts across epipolar lines, especially affecting object
boundaries that are perpendicular to the epipolar lines
(e.g. vertical object boundary with horizontal epipolar
lines).

In this paper, we address the full 2-d matching prob-
lem, eliminating the need for explicit epipolar lines
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and replacing the traditional ordering constraint with
the more generallocal coherenceconstraint. To per-
form the global 2-d optimization, we cast the stereo
correspondence problem as a maximum-flow problem
in a graph and show how the associated minimum-
cut can be interpreted as a disparity surface. While the
theoretical worst case computational complexity is sig-
nificantly higher for maximum-flow than dynamic pro-
gramming, in practice, the average case performance
is similar. We also show how this new approach, being
based on 2-d optimization, allows both binocular and
n-camera stereo configurations, as well as arbitrary 3-d
reconstruction volumes.

There have been several earlier attempts to relate the
solutions of consecutive epipolar lines matched with
dynamic programming. In Ohta and Kanade (1985),
dynamic programming is used to first match epipo-
lar lines and then iteratively improve the solutions ob-
tained by using vertical edges as reference. In Cox et al.
(1996), a probabilistic approach is used to relate the
individual matchings obtained by dynamic program-
ming to improve the depth map quality. First, it pro-
poses to improve a given epipolar line matching by
using the previous line solution to improve its own
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solution. However, this introduces a non-desirable
vertical asymmetry. A second approach is to iteratively
improve each epipolar line solutions with its neigh-
boring lines solution. While thislocal approach is not
globally optimal, it provides an efficient way to intro-
duce smoothness constraints across epipolar lines. In
Belhumeur (1996), a Bayesian approach to the stereo
correspondence problem is described. The resulting op-
timization problem can be solved efficiently by using
dynamic programming along epipolar lines, resulting
in the same problem as (Ohta and Kanade, 1985; Cox
et al., 1996) of relating the independent solutions. It
proposes a heuristic method callediterated stochas-
tic dynamic programmingthat uses previously com-
puted adjacent epipolar line solutions to iteratively
improve randomly selected solutions. This approach is
not globally optimal and furthermore introduces a large
amount of smoothness that tends to blur depth discon-
tinuities.

The concept of using maximum-flow appeared in
Greig et al. (1989) in the context of binary Markov
Random Fields, where each pixel of a binary image
is given one of two labels. The maximum-flow formu-
lation for more than two labels and a convex discon-
tinuity cost was presented by Roy and Cox (1998) in
the context of stereoscopic correspondence. Recently,
Ishikawa and Geiger (1998) presented a similar method
as Roy and Cox (1998), but expressed in the context of
Markov Random Fields and applied to image segmen-
tation. Also, Boykov et al. (1998) presented a Markov
Random Field formulation with non-linear disconti-
nuity costs that give rise to a minimum multi-way cut
problem. They present an approximate method based
on efficient maximum-flow steps applied to binary sub-
problems.

Some multiple-cameras algorithms have been pre-
sented (see Faugeras, 1993; Cox, 1994; Kang et al.,
1994; Kanade et al., 1996). In Cox (1994), a pair of
camera is used as areferenceor base pair. Other cam-
eras provide extra information to enrich the matching
cost function of the reference camera pair. The match-
ing then proceeds using dynamic programming as in
Cox et al. (1996). In Kang et al. (1994) and in Kanade
et al. (1996), a multiple-camera real-time stereo system
is presented. They use a singlereferencecamera to per-
form the matching. All the other cameras provide the
information pertinent to each possible depth of points
in the reference image. The depth is computed indepen-
dently for each pixel, making it impossible to enforce
a smoothness constraint between pixels. Instead, the

images are low-pass filtered and the matching process
uses windows rather than single pixel values. While
this achieves some level of smoothness in the solution,
it has the undesirable side effect of blurring the depth
discontinuities.

Section 2 describes a general stereo framework to
be used with multiple images from arbitrary view-
points and arbitrary reconstruction volumes. It also
describes a simple stereo matching cost function that
supports those multiple images. In Section 3, the stereo
problem is extended from matching single epipolar
lines to solving for a full disparity map, making use
of the local coherenceconstraint. In Section 4, the
stereo matching problem is formulated as a maximum-
flow problem. Details of the maximum-flow algorithm
and performance issues are presented in Section 4.3.
Experiments on both classic two-image and multiple-
image stereo sequence are presented and discussed in
Section 5.

2. The Stereo Framework

This section describes a general stereo framework. It
consists of two distinct parts. First, a volume of the 3-d
world is selected to constrain where the stereo matching
actually occurs. Any resulting reconstructed surface
must lie inside that volume. Second, each 3-d world
point inside the matching volume is projected onto the
set of images to provide pixel intensity values. This
information is then used to derive the matching cost
necessary to perform stereo analysis. Even though it is
performed inside a 3-d volume of space, our algorithm
always recovers a depth surface that cuts this volume
in two parts, and not an arbitrary 3-d shape inside the
volume.

2.1. The Stereo Matching Space

The volume of 3-d space that contains every possible
depth surface is referred to as thematching spaceand
has been used before in stereo (see Yang and Yuille
(1995) and Marr and Poggio (1979)). This volume is
discretized and searched by the stereo algorithm for
an optimal depth surface. It is characterized byfront
andbackregions that must be disjoint. By definition, a
valid stereo depth surface always separates thefrontand
backof the matching space, and is therefore defined as
a function of thefront (or back).



A Maximum-Flow Formulation 149

Figure 1. Standard stereo framework. Two horizontally separated
cameras with parallel optical axes. The stereo matching volume is
the viewing volume of camera 1.

For standard stereo, the matching space is a trun-
cated pyramid corresponding to the viewing volume of
a camera (as in Fig. 1). The front and back are simply
the near and far planes of the viewing pyramid. Obvi-
ously, any valid surface (separating the front and near
planes) will yield exactly one disparity value for every
pixel of the selected camera.

In order to be solved using this stereo algorithm,
there is no other restriction placed on the matching
space other than to possess a front and a back. This im-
plies that arbitrary chunks of the world can be analyzed
and the recovered surfaces can be fully or partially
closed, depending on the dimensionality and relation-
ship of the front and back regions. For the purpose of
this paper, we selected a partition of space that only al-
lows open surfaces with uniform quantization of either
disparity or depth, as depicted in Fig. 2.

The matching space is defined as a projective 3-d
volume (to allow pyramids as well as cubes) formed

Figure 2. General stereo framework. Three cameras at arbitrary
positions and orientations in 3-d space, around two types of matching
spaces, (A) with uniform disparity steps and (B) with uniform depth
steps.

by three axesa, b, andd containing respectivelya′size,
b′size, andd′sizequantized steps, that is


a′

b′

d′

1

 with

a′ ∈ N, 0≤ a′ < a′size

b′ ∈ N, 0≤ b′ < b′size

d′ ∈ N, 0≤ d′ < d′size

where a′ and b′ intuitively correspond to a pixel
coordinate inside a viewing volume such as in Fig. 1
while d′ corresponds to the disparity or depth of that
pixel.

A point (a′, b′, d′) is expressed in the 3-d world as
an homogeneous pointpw defined as

pw = Q


a′

b′

d′

1

 (1)

whereQ is a 4× 4 matrix that allows for changing
the shape and position of the matching space in the
world.

In particular, the matching space is made identical
to the viewing volume of a camera (see Fig. 2A) by
definingQ as

Q=W−1


1

1

0 1

1 0



×


xsize

a′size−1 0
ysize

b′size−1 0
dmax−dmin

d′size−1 dmin

0 0 0 1


wherexsizeandysize represent the image size,dmin and
dmax are the allowed disparity interval, and whereW is
the 4×4 viewing transformation matrix of the camera.
Notice thatd′ is moved to the fourth row, making it
represent disparity rather than depth, as would be the
case for standard stereo with uniformly quantized dis-
parities.

Similarly, if a uniform quantization of depth is
desired (see Fig. 2B), the last row ofQ should be
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[0, 0, 0, 1], as in this definition

Q =


amax−amin

a′size−1 amin

bmax−bmin
b′size−1 bmin

dmax−dmin
d′size−1 dmin

0 0 0 1


where the intervals [amin,amax], [bmin, bmax], and
[dmin, dmax] represent the span of the matching space
position in the world. Notice that in this case, the
matching space is defined independently of the camera
geometries.

2.2. Pixel Intensity Values

In this section, we present a general framework to han-
dle stereo in the context of multiple images taken under
arbitrary camera geometries. It naturally extends the
traditional two-image, single-baseline framework for
stereo. In this context, each camerai must simply pro-
vide a single matrixWi transforming a point in the
world coordinate system into a point in the camera
image space. This matrix is usually obtained from care-
fully measured camera parameters, which are classi-
fied asinternal andexternal. Internal parameters are
linked to the optics of the camera, such as focal length,
aspect ratio, lense distortion, etc... External parame-
ters are the position and orientation of the camera in
the world. For the purpose of stereo, detailled know-
ledge of all the parameters, orstrong calibration, is not
necessary. By finding only a few corresponding pair of
points, we can directly compute thefundamental ma-
trices (Faugeras, 1993) that express the relationship
between the cameras, yeilding the transformation ma-
trix Wi without resorting to a full calibration. In con-
trast tostrong calibration, the disparities obtained by
stereo matching with theseweakly calibratedcameras
do not have a known relation to the real depth in the
scene.

A set ofn inspectioncamerasC1, . . . ,Cn provides
n imagesI1, . . . , In of a scene, as depicted in Fig. 3
(with n = 3). A cube(not shown in Fig. 3) provides
the matching volume where we wish to compute the
depth surface. Inside the matching volume, a cube point
(a′, b′, d′) can be transformed to the homogeneous im-
age pointpi in the image of camerai by the relation

pi = J W i pw

= J W i Q [a′ b′ d′ 1]

Figure 3. Multiple-camera stereo setup. You can back-project any
world point pw to each inspection camera (C1,C2,C3), obtaining
the set of image points(p′1, p′2, p′3).

whereW i is a 4× 4 matrix describing the camera ge-
ometry, Q is from Eq. (1), andJ is a simple 3× 4
projection matrix

J =

1 0 0 0

0 1 0 0

0 0 1 0

 .
From a transformed and projected pointpi , the cor-

responding image coordinatesp′i are obtained from the
relation

p′i = H(pi )

whereH is a homogenizing function

H


 x

y

h


 = [ x/h

y/h

]
.

The pixel intensity vectorv(a′,b′,d′) associated to each
cube point(a′, b′, d′) is defined as

v(a′,b′,d′) = {Ii (H(J W i Q [a′ b′ d′ 1]T )),

∀i ∈ [1, . . . ,n]} (2)

where Ii ([x′ y′]T ) is the intensity of pixel [x′ y′]T in
imagei . This vector contains all the pixel intensity in-
formation from the inspection cameras for a particular
value of(a′, b′, d′).
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2.3. Matching Cost

In order to perform stereo matching, amatching cost
function is required. Ideally, it is minimum for a likely
match and large for an unlikely one. Deriving a match-
ing cost that represents well the stereo problem is not
a trivial task. Deriving one that can also be globally
minimized in polynomial time is even more difficult.
Until now, dynamic programming provided an efficient
way to minimize cost functions that enforce smooth-
ness, which are generally viewed as very appropriate
for the stereo problem. However, as a side effect of this
method, the cost function had to beweakenedby en-
forcing smoothness along a line instead of a surface.
In this paper, the maximum-flow minimization method
removes this limitation while remaining efficient and
therefore can solve better suited cost functions than
previously possible. There is however a new restric-
tion on the cost function: the smoothness term must be
convex, rather than arbitrary for the dynamic program-
ming approach. This, as experiments will show, is not
a major problem and does not significantlyweakenthe
cost function. This new cost function is described next.

If we assume that surfaces are lambertian (i.e. their
intensity is independent of the viewing direction) then
the pixel intensity values, components ofv(a′,b′,d′),
should be identical when(a′, b′, d′) is on the surface
of an object and thus a valid match. Then, we can na-
turally define the matching costcost(a′, b′, d′) as the
L2-norm of the pixel intensity vectorv(a′,b′,d′), that is

cost(a′, b′, d′) = 1

n

n∑
i=1

(
v(a′,b′,d′)i − v(a′,b′,d′)

)2
. (3)

where v(a′,b′,d′) is the mean of the components of
v(a′,b′,d′).

3. Recovering a Full Disparity Map

Typically, stereo matching is performed independently
along epipolar lines, to allow an efficient algorithm
to be used, such as dynamic programming. A natural
extension to matching a single pair of epipolar lines
at a time would be to extend it to the whole image at
once, as depicted in Fig. 4, by essentially matching all
pairs of epipolar lines simultaneously. The matching
volume is quantized in three dimensions with two axes
(a, b) representing image pixels and an axisd for the
disparity associated with each pixel(a, b). The depth
surface contains all the computed disparities of the base
image. The goal of this construction is to take advantage

Figure 4. Matching whole images. In the matching volume, the
Front andBack correspond respectively to the minimum and maxi-
mum disparities. The depth surface cuts the matching volume in two
parts, isolatingFront andBack.

of one very important property of disparity fields,local
coherence, which suggests that disparities tend to be
locally very similar in all directions, includingacross
epipolar lines.

Dynamic programming cannot be used anymore to
globally establish correspondence since there is no two-
dimensional ordering that can be used in a way similar
to the use of the one-dimensional ordering along indi-
vidual epipolar lines.

Many solutions for global disparity surface match-
ing have been proposed (Cox, 1994; Ohta and Kanade,
1985; Belhumeur, 1996). Typically, these algorithms
propose an approach in which a solution is iteratively
improved by using the previous matching obtained for
neighboring epipolar lines. While this can sometimes
work in practice, these solutions are not very effi-
cient and not optimal with regard to their inability to
find the global minimum of the cost function they are
minimizing.

4. Stereo Matching as a Maximum Flow Problem

We propose to solve globally for the disparity surface
by adding a source and a sink to the formulation of
Fig. 4, and treat it as a flow problem in a graph, as
depicted in Fig. 5. The graph depicts a flow network
where each arc has a stated flow capacity, and each node
acts as a junction. The flow entering a node is always
equal to the flow leaving a node, thereby enforcing a
flow conservationproperty. The maximum-flow prob-
lem we wish to solve is concerned about finding the
largest flow that can leave the source and reach the
sink through the graph, without exceeding the capa-
cities of the arcs (Cormen et al., 1990). According to
the Max-flow min-cut theorem(Cormen et al., 1990),
the set of edges that are saturated by the maximum
flow through the graph represents aminimum-cutof
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Figure 5. Image Matching as a Maximum Flow problem.

the graph. By connecting the source and sink respec-
tively to thefront andbackof the matching volume, as
in Fig. 5, a cut separating the source and sink effectively
represents a disparity surface. Moreover, a minimum-
cut will represent the minimum cost disparity surface
sought.

Consider the graphG = (V, E) forming a 3-d mesh
as in Fig. 5. The vertex setV is defined as

V = V∗ ∪ {s, t}

wheres is the source,t is the sink, andV∗ is the 3-d
mesh

V∗ = {(a′, b′, d′) : 0≤ a′ < a′size, 0≤ b′ < b′size,

0≤ d′ < d′size+ 1}

where(a′size, b
′
size) is the base image size andd′size is

the depth or disparity solution space. It is made larger
by one node to provide a dummy node required for an
appropriate graph formulation.

Internally the mesh is six-connected. There are two
disjoint sets of vertices,Vfront andVback, that represent
the front andbackof the graph, such that the sources
is connected to each node ofVfront, while each node of
Vback is connected to the sinkt . We define them as

Vfront = {(a′, b′, 0) : 0≤ a′ < a′size, 0≤ b′ < b′size}
Vback= {(a′, b′, d′size) : 0≤ a′ < a′size, 0≤ b′ < b′size}.

The edges of the graph are defined as

E = Elabel∪ Epenalty∪ Ein ∪ Eout

with

Ein = {(s, u) : u ∈ Vfront}
Eout = {(u, t) : u ∈ Vback}

Elabel = {(u, v) ∈ V∗ × V∗ : u− v = (0, 0,±1)}
Epenalty=

{
(u, v) ∈ V∗ × V∗ : ud′ = vd′

and(va′ , vb′) ∈ N(ua′ ,ub′ )
}

where(ua′ , ub′ , ud′) and(va′ , vb′ , vd′) are thea′, b′ and
d′ components of nodesu and v, andN(a′,b′) is the
neighborhood of pixel(a′, b′). It can be arbitrarily cho-
sen, but in this paper we use the 4-neighborhood

N(a′,b′) = {(a′ ± 1, b′), (a′, b′ ± 1)}

With respect to Fig. 5, the edge setEin is the sec-
tion connecting the source and the front, whileEout

is the section connecting the back and the sink. The set
Elabel expresses the pixel matching costs and contains
all edges parallel to thed axis. The setEpenaltyexpresses
the smoothness constraint and contains all edges inside
the (a, b) planes. After the minimum cut is obtained,
cut edges belonging toEpenaltywill be discarded while
those fromElabel will represent the obtained disparity.
The different role oflabel andpenaltyedges will be
further described in Sections 4.1 and 4.2.

We define the edge capacities in the graph in a
straightforward way. The connections to the source or
the sink have infinite capacities. Each vertex(a′, b′, d′)
in the graph corresponds to a potential match that as-
signs disparityd′ to pixel(a′, b′), so we can use Eq. (3)
to derive its matching cost. This cost is directly used
as the capacity of the label edge (∈ Elabel) associated to
this vertex. To express smoothness, a constant capacity
is given to penalty edges (∈ Epenalty). The edge capacity
c(u, v) from nodeu to v is thus defined as

c(u, v) =



0 if (u, v) /∈ E

∞ if (u, v) ∈ Ein or (u, v) ∈ Eout

cost(u) if (u, v) ∈ Elabel andud′ < vd′

cost(v) if (u, v) ∈ Elabel andud′ > vd′

K if (u, v) ∈ Epenalty

(4)

whereK is a smoothness factor.
The minimum-cutCmin obtained by computing the

maximum-flow overG contains a set of edges of mini-
mum total capacity that isolates the source and the sink.
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Being a minimum-cut,Cmin is defined as

arg min
C

( ∑
(u,v)∈C

c(u, v)

)

= arg min
C

( ∑
(u,v)∈Clabel

c(u, v)+
∑

(u,v)∈Cpenalty

c(u, v)

)

whereClabel = C ∩ Elabel andCpenalty= C ∩ Epenalty.
We define the labelling functionsL(a′,b′) as the smallest
d′ component of the nodes of an edge inClabel. Such
an edge is of the form((

a′, b′, L(a′,b′)
)
,
(
a′, b′, L(a′,b′) + 1

))
or ((

a′, b′, L(a′,b′) + 1
)
,
(
a′, b′, L(a′,b′)

))
.

Notice that these two forms have the same capacity:
cost(a′, b′, L(a′,b′)). By replacing the edge capacities
according to Eq. (4) we have

min
C

( ∑
(u,v)∈Clabel

cost(u)+
∑

(u,v)∈Cpenalty

K

)

= min
C

( ∑
((a′,b′,L(a′ ,b′)),v)∈Clabel

cost
(
a′, b′, L(a′,b′)

)
+

∑
((a′,b′,L(a′ ,b′)),v)∈Cpenalty

K

)

=
∑
∀(a′,b′)

cost
(
a′, b′, L∗(a′,b′)

)
+ K

2

∑
∀(a′,b′),∀(i ′, j ′)∈N(a′ ,b′)

∣∣L∗(a′,b′) − L∗(i ′, j ′)
∣∣ (5)

where L∗(a′,b′) is the labelling function associated to
the minimum-cutCmin. This transformation is possi-
ble since a minimum-cut has the property that for all
(a′, b′) there exists exactly one disparityL(a′,b′) such
that the edge((a′, b′, L(a′,b′)), (a′, b′, L(a′,b′) + 1)) be-
longs toClabel. This property is discussed in Section 4.2.

We can see that the number of penalty edges in the
minimum cut is directly related to the difference in dis-
parity between neighboring pixels. This is intuitively
explained by noticing that when two neighboring pix-
els have different disparities, a hole is created in the
cut between the two adjacent label edges. It must be
patchedby adding to the cut a number of penalty edges

equal to the size of the gap, which is the difference in
disparities between the pixels.

In summary, the cost function of Eq. (5) corresponds
to finding a disparity surface that globally minimizes
apixel matching costterm and asmoothnessterm that
assigns a linear penalty to a jump in disparity between
neighboring pixels. The tradeoff between these terms
is determined by the factorK .

4.1. Expressing Smoothness Through Edge Capacity

From the partition ofE in two sets of edges, the set
of penalty edgesEpenalty is used to control the level
of smoothness of the disparity surface (second term of
Eq. (5). As depicted in Fig. 6, penalty edges consists
of all edges not oriented along the disparity axisd. As
shown in Eq. (4), the matching cost defines the capa-
city of a label edge, while penalty edges are given the
constant valueK which also corresponds intuitively
to anocclusioncost. In Fig. 6, the darker edges con-
necting the black vertices are penalty edges and the
lighter edges are label edges. A higher occlusion cost
(i.e. largerK ) increases the smoothness of recovered
surfaces while, inversely, a lower occlusion cost faci-
litates depth discontinuities.

The effect of the smoothness parameterK is illus-
trated by a 2-d example problem with a simple cost
function, as shown in Fig. 7. The minimum-cut of this
simple graph is computed for different smoothness val-
ues (0, 1, and∞) and displayed in Fig. 7 as thick
edges. Notice that the label edges, which determine
the solution, are horizontal. These extreme values of the
smoothness parameterK have intuitive consequences.
SettingK = 0, each row of the graph is independently
given a disparity, therefore achieving maximal discon-
tinuity in the disparity surface. WhenK = ∞, the re-
sulting disparity surface is flat (maximally smooth) and
features a single disparity value for the whole image.
For K = 1, a balance is reached between the matching
cost and the smoothness required.

Figure 6. Expressing smoothness through edge capacity.
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Figure 7. Example cuts for different smoothness values.K = 0,
maximal discontinuity.K = 1, intermediate smoothness.K =∞,
infinite smoothness.

4.2. From a Cut to a Disparity Surface

The max-flow min-cut theorem states that once the
maximum flow is found, a minimum-cutCmin sepa-
rates the source and the sink in such a way that the
sum of edge capacities ofCmin is minimized. This cut
is therefore the globally optimal way to separate the
source and the sink for our particular cost function. To
derive our cost function of Eq. (5), we used an im-
portant property of our graph formulation, namely that
the minimum cut is guaranteed to provide exactly one
depth estimate for each image point, or more simply
that the cut does notfold on itself. This property can
be guaranteed in various ways.

First, we conjecture that a capacity function with a
constant capacityK for all penalty edges, such as in
Eq. (4), always satisfies this property.

As proposed by Boykov et al. (1998), a large constant
can be added to the likelihoods of Eq. (3). The capacity
function (Eq. (4)) becomes

c(u, v)

=


. . .

cost(u)+ B if (u, v) ∈ Elabel andud′ < vd′

cost(v)+ B if (u, v) ∈ Elabel andud′ > vd′

whereB is a value larger than the sum of all the penalty
edges of the graph. This will effectively add a constant
to the energy function of Eq. (5), thereby insuring that
the minimum of the modified energy function is the
same as the original one.

Also, Ishikawa and Geiger (1998) suggested to as-
sign an infinite capacity to label edges returning from
the sink toward the source. The capacity function is
modified from Eq. (4) to become

c(u, v) =


. . .

cost(u) if (u, v) ∈ Elabel andud′ < vd′

B if (u, v) ∈ Elabel andud′ > vd′

where B is infinity (Ishikawa and Geiger, 1998). In
fact, it is sufficient and more practical to defineB as
a value larger than the sum of all the penalty edges of
the graph.

Notice that the two previous solutions (Boykov et al.,
1998; Ishikawa and Geiger, 1998) do not make any
assumption about the capacities of penalty edges. This
adds flexibility to the choice of these capacities and
might prove to be useful in the future.

The full disparity surface can now be constructed
easily from the minimum cutC of graphG as follows.
For each point(a′, b′), the disparity isL∗(a′,b′) since the
edge(a′, b′, L∗(a′,b′)) − (a′, b′, L∗(a′,b′) + 1) belongs to
Cmin, as stated in Eq. (5).

4.3. Solving the Maximum Flow Problem

There is an abundant literature on algorithms to solve
the maximum-flow problem (Cormen et al., 1990;
Goldberg and Rao, 1997). For this paper, we imple-
mented a well known algorithm,preflow-push lift-
to-front (Cormen et al., 1990). Currently, the best
maximum-flow algorithm is presented by Goldberg and
Rao (1997) and is particularly well suited for sparse
graphs like the ones built for stereo matching.

The number of verticesv in the graph is equal to
the number of image pixels multiplied by the depth
resolution. For an image of total sizes= abpixels, i.e.
of dimensiona× b, and a depth resolution ofd steps,
we havev = sd. Since the graph is a three-dimensional
mesh where each vertex is six-connected,1 the number
of edgese is e≈ 6sd.

This implies that the preflow-push algorithm used,
with a running time

O(ve log(v2/e))

yields for our problem

O(s2d2 log(sd)).
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The algorithm with the currently best bound (Goldberg
and Rao, 1997) runs in

O
(
e

3
2 log(v2/e

)
log(U ))

whereU is the largest edge capacity, in our case a con-
stant since pixels have finite values, yielding a running
time of

O(s1.5d1.5 log(sd) log(U )).

However, we did not use this algorithm in practice
since this performance improvement is for the worst
case only, and not for the average case. No significant
improvement in the average case is expected over the
preflow-push relabel algorithm we used.

The dynamic programming approach on separate
epipolar lines proposed by Cox et al. (1996) requires a
total running time of2(sd), which might seem much
better than the maximum-flow algorithm. However, the
topology of the graph, the positions of the source and
sink, and the structure of edge capacities all tend to
make the problem easier to solve, making the average
running time much better than the worst case analy-
sis would suggest. Figure 8 shows the typical perfor-
mance as a function of total image sizes (in pixels)
and depth resolutiond. The average running time is
O(s1.2 d1.3), which is almost linear with respect to
image sizes (in pixels) and compares favorably with
the dynamic programming approach. The typical run-
ning time for 256× 256 images is anywhere between
1 and 30 min, on a 160 MHz Pentium computer, de-
pending on the depth resolution used. While this is
considerably slower than Cox et al. (1996), which was

Figure 8. (left) Performance as a function of image sizes in pixels,
for fixed depth resolution. (right) Performance as a function of depth
resolutiond for a fixed sizes. Three dotted lines show performance
levels ofO(

√
s), O(s), andO(s2).

originally built for speed, our algorithm was not opti-
mized for speed. Performance improvement is expected
in the future.

5. Experiments and Results

In this section, results of binocular andn-camera
stereoscopic matching from maximum-flow are pre-
sented and compared with two other algorithms, both
based on dynamic programming. The requirement to
support multiple images is not readily handled by the
vast majority of stereo algorithms, making many com-
parisons unpractical.

First, the algorithm referred to asstandard stereo
uses line-by-line dynamic programming onn-camera
with variable depth resolutions. It differs from the
maximum-flow algorithm only in the way it computes
the disparity surface. They are otherwise identical and
their results use the same disparity scale and are not
equalized. By equalization, we refer to a solution-
dependent transformation, usually non-linear, applied
to the solution in order to improve the contrast of the
displayed results. The most common such equalization
is histogram equalization. Often, this transformation
makes fair comparison of results very difficult, if at all
possible.

Second, the algorithm referred to asMLMH+V is
the efficient dynamic programming implementation
from Cox et al. (1996) (for the binocular version) and
from Cox (1994) (for then-camera version). It differs
from the previous algorithm in that performs an iter-
ative optimization of its disparity solution to enforce
smoothness across disparity lines. It should be noted
that the results from this algorithm use a different dis-
parity scale (gray levels) thanmaximum-flow or stan-
dard stereo and are equalized to improve their contrast.

Random Dot Stereogram. To demonstrate the sym-
metry in the disparity map achieved bymaximum-flow,
we applied it on a random-dot stereogram (see Fig. 9)
with disparities set at 0, 4 and 8 pixels. The resulting
disparity maps, shown in Fig. 10, differ mostly around
depth discontinuities.Maximum-flow features simi-
lar boundaries in all directions whilestandard stereo
yields very different boundary shapes, due to the fact
that solutions are computed horizontally and no infor-
mation is shared vertically.

Granite. Figure 11 presents the camera and scene
setup for a synthetic sequence of 5 views of a smooth
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Figure 9. A random dot stereogram (displayed for cross-eyed
stereo viewing).

Figure 10. Disparity map for random dot stereogram.

Figure 11. The Granite scene and camera setup. The mesh
represents the matching volume.

textured surface. The camera images, displayed in
Fig. 12, are put in correspondence over the matching
space shown as the 3-d mesh of Fig. 11.

Results for different number of images and differ-
ent smoothness values are shown in Figs. 13 and 14.
The caseK = 0 corresponds to using direct search to

Figure 12. TheGranite camera images (256× 256).

solve for depth and yields a noisy depth map. Figure 14
presents the accuracy of the depth map as a function
of smoothness value, for 2 and 5 cameras. Not sur-
prisingly, these curves suggest that better depth map
accuracy is achieved with more images used for match-
ing. Also, enforcing some degree of smoothness, even a
small amount, is always better than none at all (K = 0).
Finally, the accuracy degrades slowly as the smooth-
ness is increased to large levels. This implies that the
maximum-flow method is very tolerant of bad estima-
tion of the smoothness parameter.

Shrub. Figure 15 shows a pair of theShrub image
sequence (courtesy of T. Kanade and T. Nakahara of
CMU). The results in Fig. 16 show howmaximum-flow
tends to extract sharp and precise depth discontinuities,
while standard stereo andMLMH + V produce many
artifacts along vertical depth discontinuities. Two levels
of depth resolutions are shown (32 and 128 steps) with
different level of smoothness. It is notable that even at
high smoothness levels,maximum-flow does not pro-
duce spurious horizontal links across the gap between
the two larger shrubs. The results of multiple-camera
analysis are shown in Fig. 17. All the images of this
sequence share a common horizontal baseline. Even
though the algorithms use different number of images
(4 and 7), the total spanned camera displacement is the
same and therefore provides about the same depth dis-
crimination. Some image normalization is performed
for MLMH + V prior to matching. None was used for
the other two algorithms.

Pentagon. The stereo pairPentagon is shown in
Fig. 18. The matching results are presented in Fig. 19.
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Figure 13. TheGranite results. Results shown for smoothness factors 0 to 100, for 2 and 5 cameras.

Figure 14. TheGranite results.

This stereo pair presents a challenge since the camera
motion is not exactly horizontal and contains some ro-
tation, creating image motions that violate the epipo-
lar constraint. Fortunately, algorithms likeMLMH+V
resist these misalignments better since they allow neg-
ative disparities as well as positive. This explains how
the highway structures at the top left are well recovered
for MLMH+V while the other algorithms produced
some noticeable spurious mismatches. As predicted,
maximum-flow does produce a more symmetric result,
with less spurious horizontal streaks.

Park Meter. The image sequencePark meter shown
in Fig. 20 was analyzed for different numbers of im-
ages. The results of the binocular case are presented
in Fig. 21. Here a number of vertical objects show the
difficulties thatstandard stereo andMLMH+V have to
relate horizontal epipolar line solutions. No horizontal
streaks are present in the results obtained bymaximum-
flow. Using 4 images (horizontally displaced along a
single baseline), the results shown in Fig. 22 improve
significantly from those of Fig. 21. No results were
available forMLMH+V.
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Figure 15. TheShrub stereo pair.

Roof. The image sequenceRoof (courtesy of T.
Kanade and E. Kawamura of CMU) is shown in Fig. 23.
It contains 13 images featuring either horizontal or
vertical translations. The results formaximum-flow and
MLMH+V are presented in Fig. 24. The disparity map
obtained bymaximum-flow is very detailed. In parti-
cular, the structure of the roof is well reconstructed.
Figure 25 presents a 3-d reconstruction of theRoof
sequence based on the maximum-flow depth map. It

Figure 16. Disparity maps for theShrub a two precision level (32 and 128 disparity steps). On the left, themaximum-flow results. In the middle
and right, results forstandard stereo andMLMH+V respectively.

demonstrates that fine details can be very effectively
recovered.

Castle. The sequenceCastle from CMU is shown in
Fig. 26 and contains 11 images with various combina-
tions of horizontal, vertical and forward camera mo-
tion. The 11 images were used to create the disparity
map shown on the right for the image shown on the left.
A high level of detail and very few spurious matches
are present.

It is important to note that this sequence represents
a challenge since the actual disparity range, that is,
the difference in disparity between the closest and the
farthest object, is only 2.7 pixels. Performed at a depth
resolution of 96 steps, this implies that the disparity
precision achieved is 0.03 pixels.

5.1. Level of Smoothness

In this section, we wish to illustrate how the level
of smoothness, represented by the parameterK
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Figure 17. Disparity maps for theShrub sequence using 4 and 7
images. Both sequences span the same total horizontal displacement
and should yield similar results. White points on the right denote
detected occlusions.

Figure 18. ThePentagon stereo pair.

Figure 19. Disparity maps for thePentagon stereo pair.

Figure 20. ThePark meter stereo pair.

Figure 21. Disparity maps for thePark meter sequence. Results
are shown for 2 image sequence.

Figure 22. Disparity maps for thePark meter. Results are shown
for 4 image sequence. The matching volume is 256× 240× 64.

Figure 23. Two horizontally separated images from the sequence
Roof.

of Section 4.1, affects the quality of the disparity
maps. Figure 27 illustrates this for four levels of
smoothness, namelyK = 0, 1, 10, 100. ForK = 0,
the capacity of smoothness edges is zero and there-
fore each pixel is given a disparity independently of
its neighbors. It is essentially equivalent to using direct
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Figure 24. Disparity maps for theRoof sequence. Results are
shown for 13 images. White points on the right denote detected oc-
clusions. The maximum-flow matching volume is 256× 240× 64.

Figure 25. Reconstructed 3-d surface model for theRoof sequence.
The depth map of maximum-flow disparity map is used.

search with correlation over a single pixel window (on
the left of Fig. 27).

As expected, lowering the smoothness capacities
favors depth discontinuities and therefore creates shar-
per object edges, at the expense of surface smoothness.

Figure 27. Disparity maps for theShrub sequence for 4 smoothness levels. On the left,K = 0 enforce no smoothness. ForK = 1, K = 10,
andK = 100, progressively more smoothness is applied, resulting in graceful degradation of depth map.

Figure 26. TheCastle image stereo sequence. On the left, one of
the 11 images. On the right, the resultingmaximum-flow disparity
map.

It is observed that large depth discontinuities tend to
stay sharp as the level of smoothness increases. This
is probably due to the fact that the smoothness is ex-
pressed in all directions instead of only along epipolar
lines. This result differs strongly from most other me-
thods where a high level of smoothness induces blurred
or missing depth discontinuities.

6. Conclusion

We have presented a new algorithm for establishing
n-camera stereo correspondence, based on a reformu-
lation of the stereo matching problem to finding the
maximum-flow in a graph. It is able to solve optimally
for the full disparity surface in a single step, there-
fore avoiding the usual disparity inconsistencies across
neighboring epipolar lines. Theorderingconstraint, re-
quired for dynamic programming, is replaced with a
more generallocal coherenceproperty that applies in
all directions instead of along epipolar lines. The new
stereo problem formulation supports multiple arbitrary
cameras in a natural way and can estimate depth for an
arbitrary virtual camera. Due to the global nature of the
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minimization process, depth discontinuities are sharp
and well localized, for any desired level of smoothness.
Moreover, most spurious discontinuities are eliminated
since smoothness is applied in all directions instead of
only along epipolar lines.

We believe that this paper established clearly that a
simple cost function, such as the one we used, can yield
very high quality solutions when minimized globally
and efficiently. These solutions rival and often surpass
much more sophisticated cost functions that are im-
possible to globally minimize because of their com-
plexity.

As for future research, there are many avenues open
to improve the maximum-flow formulation proposed
in this paper. In particular, a multi-resolution approach
as well as local smoothness variations could be directly
embedded in the graph, further improving performance
and depth map quality.
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Note

1. The nodes on the side of the graph are in fact less than 6-connected.
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