
c 1998 IEEE. Proc. of Int. Conference on Computer Vision , Bombai, January 1998 1A Maximum-Flow Formulation of theN-camera Stereo Correspondence ProblemS�ebastien Roy� Ingemar J. CoxNEC Research Institute4 Independence WayPrinceton, NJ 08540, U.S.A.AbstractThis paper describes a new algorithm for solv-ing the N-camera stereo correspondence problem bytransforming it into a maximum-ow problem. Oncesolved, the minimum-cut associated to the maximum-ow yields a disparity surface for the whole image atonce. This global approach to stereo analysis providesa more accurate and coherent depth map than the tra-ditional line-by-line stereo. Moreover, the optimalityof the depth surface is guaranteed and can be shown tobe a generalization of the dynamic programming ap-proach that is widely used in standard stereo. Resultsshow improved depth estimation as well as better han-dling of depth discontinuities. While the worst caserunning time is O(n2d2log(nd)), the observed averagerunning time is O(n1:2 d1:3) for an image size of npixels and depth resolution d.1 IntroductionIt is well known that depth related displacementsin stereo pairs always occur along lines associated tothe camera motion, the epipolar lines. These linesreduce the stereo correspondence problem to one di-mension and the ordering constraint allows dynamicprogramming to be applied [1{4]. However, it is clearthat this reduction to 1-d is an oversimpli�cation ofthe problem that is primarily necessary for computa-tional e�ciency. The solutions obtained on consec-utive epipolar lines can vary signi�cantly and createartifacts across epipolar lines, especially a�ecting ob-ject boundaries that are perpendicular to the epipolarlines (e.g. vertical boundary with horizontal epipolarlines).In this paper, we address the full 2-d problem, re-placing the traditional ordering constraint with themore general local coherence constraint. To performthe global 2-d optimization, we cast the stereo cor-respondence problem as a maximum-ow problem ina graph and show how the associated minimum-cutcan be interpreted as a disparity surface. While thetheoretical computational complexity is signi�cantlyhigher for maximum-ow than dynamic programming,in practice, the average case performance is similar.We also show how this new paradigm can support bothbinocular and N -camera stereo con�gurations.�S�ebastien Roy is visiting from Universit�e de Montr�eal,D�epartement d'informatique et de recherche op�erationnelle,C.P. 6128, Succ. Centre-Ville, Montr�eal, Qu�ebec, H3C 3J7

There have been several earlier attempts to relatethe solutions of consecutive epipolar lines matchedwith dynamic programming. In [2], dynamic pro-gramming is used to �rst match epipolar lines andthen iteratively improve the solutions obtained by us-ing vertical edges as reference. In [3], a probabilisticapproach is used to relate the individual matchings ob-tained by dynamic programming to improve the depthmap quality. As a �rst approach, the current linematching uses the previous epipolar line solution toimprove its own solution. However, this introduces anon-desirable vertical asymmetry. A second approachis to iteratively improve each epipolar line solutionswith its neighboring lines solution. While this localapproach is not globally optimal, it provides an e�-cient way to introduce smoothness constraint acrossepipolar lines. In [5], a Bayesian approach to thestereo correspondence problem is described. The re-sulting optimization problem can be solved e�cientlyby using dynamic programming along epipolar lines,resulting in the same problem as [2, 3] of relating theindependent solutions. It proposes a heuristic methodcalled iterated stochastic dynamic programming thatuses previously computed adjacent epipolar line so-lutions to iteratively improve randomly selected solu-tions. This approach is not optimal and further moreintroduce a large amount of smoothness that tends toblur depth discontinuities.Some multiple camera algorithms have been pre-sented (see [4, 6{8]). In [6], a pair of camera is used asa reference or base pair. Other cameras provide ex-tra information to enrich the matching cost functionof the reference camera pair. The matching then pro-ceed using dynamic programming as in [3]. In [7] and[8], a multiple-camera real-time stereo system is pre-sented. They use a single reference camera to performthe matching. All the other cameras provide the in-formation pertinent to each possible depth of points inthe reference image. While each pixel is independentlysolved for depth, an implicit smoothness constraint isenforced by smoothing the images before processingthem.Section 2 describes a general N -camera stereoframework to be used with multiple images from arbi-trary viewpoints. In Section 3, the stereo problem isextended from matching single epipolar lines to solv-ing for a full disparity map. The generalization ofthe ordering constraint to local coherence constraint isalso described there. In Section 4, the stereo match-
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Figure 1: Multiple-camera stereo setup. For any dis-parity d of point p00, you can back-project (x00; y00; d)in each inspection camera (C1; C2; C3), obtaining theset of points p01; p02; p03.ing problem is formulated as a maximum-ow prob-lem. Details of the maximum-ow algorithm and per-formance issues are presented in Section 4.3. Exper-iments on both classic two-image and multiple-imagestereo sequence are presented and discussed in Sec-tion 5.2 Stereo FrameworkIn this section, we present a general framework tohandle stereo in the context of multiple images takenunder arbitrary camera geometries. It naturally ex-tends the traditional two-image, single-baseline frame-work for stereo.A set of n inspection cameras C1; : : : ; Cn providesn images I1; : : : ; In of a scene, as depicted in Figure 1(with n = 3). A base camera C0 provides the viewfor which we wish to compute the disparity map (orequivalently depth map) for every image point. Thebase camera does not have to provide an image; onlythe inspection cameras do. In the case of Figure 1,the base camera C0 is identical to inspection cameraC1. A 3d point Pw expressed in the world coordinatesystem with homogeneous coordinatesPw = [ xw yw zw 1 ]Tcan be transformed to the homogeneous point Pi inthe coordinate system of camera i by the relationPi =Wi Pwwhere Wi = � Ri Ti0T 1 �and Ri and Ti are, respectively, the rotation andtranslation matrices de�ning the position and orienta-tion of camera i. Assuming the pinhole camera model,

a point Pi is projected onto the image plane into theprojective point pi by the relationpi = " xiyizi # = J Piwhere J is the projection matrix de�ned asJ = " 1 0 0 00 1 0 00 0 1 0 #From a transformed and projected point pi, thecorresponding image coordinates p0i are obtained fromthe relation p0i = H(pi)where H is an homogenizing functionH(" xyh #) = � x=hy=h �During the process of stereo matching, each pointp00 of image I0 is attributed a depth z or equivalently adisparity d (de�ned as d = 1=z) and can be expressedas P0 = " p00z1 # = 264 x00y00z1 375 = 264 x00y001d 375in the base coordinate system C0. While these twoformulations are equivalent, using the disparity for-mulation allows one to express naturally points thatreach an in�nite depth. Therefore, we use disparity dinstead of depth z.From this point P0, it is possible to project backto any camera image p0i using the previously de�nedequations asp0i = H(pi)= H(J Pi)= H(J Wi Pw)= H(J Wi W�10 P0)� x0iy0i � = H(J Wi W�10 264 x00y001d 375)and therefore obtain pixel intensity information frominspection cameras in order to perform the matching.During the stereo matching, each base image pointp00 = [x00; y00]T and its disparity value d generates a setof reprojected pixel values that form a pixel intensityvector v de�ned asv(p00; d) = fIi(H(J Wi W�10 " p001d #))g;8i 2 [1; : : : ; n](1)
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aFigure 2: Epipolar Matching. Left, grid of all possi-ble matches between line A and B. Right, equivalentformulation of the problem, where B does not appeardirectly.This vector contains all the pixel intensity informationfrom the inspection cameras for a particular match.In order to perform the actual stereo matching, amatching cost function is required. Ideally, it is mini-mum for a likely match and large for an unlikely one.Deriving a meaningful matching cost is a non trivialtask. Since this is not the primary purpose of thispaper, we will use the simple form described next.If we assume that surfaces are Lambertian (i.e.their intensity is independent of viewing direction)then the pixel intensity values of v(p00; d) should beidentical when (p00; d) is on the surface of an object andthus a valid match. Then, we can de�ne the matchingcost cost(p00; d) as the variance of the pixel intensityvector v(p00; d) ascost(p00; d) = 1nX(v(p00; d)� v(p00; d))2 (2)2.1 Epipolar geometry and MatchingIt is a well known fact that for a given camera ge-ometry, each image point is restricted to move along asingle line called the epipolar line [4]. This reduces thematching process to a 1-D search along correspondingepipolar lines.A very important additional constraint is the or-dering constraint. It states that the order of pointsalong corresponding epipolar lines is preserved. Infact, this corresponds to enforcing a smoothness con-straint along epipolar lines (also noted in [4]).In the traditional approach to stereo matching, asingle epipolar line A is matched with its correspond-ing epipolar line B in the other image. The establishedmatching between the two lines is a path in the gridof all possible matches (a; b), as shown on the left ofFigure 2. The allowed starting and ending positions ofthe path are shown as thick black lines. By assumingthat the ordering constraint is satis�ed along epipo-lar lines, it is possible to solve this path problem verye�ciently via dynamic programming [1{4].In order to be able to use multiple cameras, thematching grid between lines A and B can be trans-formed into the equivalent formulation on the right ofFigure 2, where only line A appears directly. For thatcase, each potential match has the form (a; d), where

d epipolar
lines

a l
(a,l,d)Figure 3: Matching whole images. All epipolar linesl are stacked together so that the whole image A ismatched with disparity range d. A point has depth dand position a along epipolar line l.a is a position along line A and d is its associateddisparity. The coordinates in image B correspondingto the match (a; d) are easy to compute from Eq. 1,while the cost function is directly obtained from Eq. 2.Given a match (a; d) or (a; b), it is straightforward tomap it to any number of cameras with known geome-tries and therefore use extra information from multiplecameras. However, the representation using (a; d) isfavored over one using (a; b) because we do need twobase camera (A and B) as in [6] but only one (A).3 Recovering a full disparity mapA natural extension to matching a single pair ofepipolar lines at a time would be to extend it tothe whole image at once, as depicted in Figure 3,by matching all pairs of epipolar lines simultaneously.Every minimum-cost path de�ning the matching ofa single epipolar line are now assembled into a sin-gle minimum-cost surface. This surface contains allthe disparity information of the base image. The goalof this construction is to take advantage of one veryimportant property of disparity �elds, local coherence,suggesting that disparities tend to be locally very sim-ilar, in any and all directions. As discussed previously,this property is exploited along epipolar lines by en-forcing the ordering constraint. However, local coher-ence occurs in all directions and thus across epipolarlines. By putting all the epipolar lines together andsolving globally for a disparity surface, it becomes pos-sible to take full advantage of local coherence and im-prove the resulting depth map.Note that each potential match (a; l; d) in Figure 3is four-connected since it is part of a 2-D matchinggrid as presented in Figure 2. To take full advantageof local coherence, they have to be be six-connected torelate each individual epipolar line. Unfortunately, do-ing this makes dynamic programming unusable sincethere is no strict order for building the solution sur-face.Many solutions for global disparity surface match-ing have been proposed [2, 5, 6]. Typically, these algo-rithm propose an iterative approach in which a solu-tion is improved by using the previous matching ob-tained for neighboring epipolar lines. While this cansometimes work in practice, these solutions are notvery e�cient and not optimal.
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Figure 4: Image Matching as a Maximum Flow prob-lem.3.1 Avoiding direct use of epipolar geom-etryAn important distinction has to be made betweenthe stereo matching problems depicted in Figures 3and 4. In the �rst case, the epipolar lines are simplystacked up one after the other. While this might workfor binocular stereo, it does not extend well to thecase of multiple image stereo since the epipolar linesare speci�c to a single pair of cameras and arbitrarycamera geometries will yield arbitrary set of epipolarlines.To alleviate this problem, we discard the orderingconstraint altogether, replacing it with the local coher-ence property mentioned in Section 3, which is similarbut more general. In this new formulation, we can pickany set of lines in the image to be stacked together.The obvious choice is to take the set of horizontal linessince this is the natural image layout. This explainswhy we can refer to a point in Figure 4 by its imagecoordinates (x0; y0) instead of the epipolar line index land position a in Figure 3.The epipolar geometry is now only indirectly usedin computing the matching cost for points with givendisparity values (in Equation 1) but does not con-tribute as an explicit constraint to the matching pro-cess.4 Stereo matching as a Maximum FlowproblemWe propose to solve globally for the disparity sur-face by adding a source and a sink to the formula-tion of Figure 3, and treat it as a ow problem in agraph, as depicted in Figure 4. Consider the graphG = (V;E) forming a 3-D mesh as in Figure 4. Thevertex set V is de�ned asV = V � [ fs; tgwhere s is the source, t is the sink, and V � is the 3dmesh V � = f(x0; y0; d) : x0 2 [0 : : : x0max];y0 2 [0 : : : y0max]; d 2 [0 : : : dmax]gwhere (x0max +1; y0max+1) is the base image size anddmax + 1 is the depth resolution. Internally the mesh

is six-connected and the source s connects to the frontplane while the back plane is connected to the sink t.We haveE = ( (u; v) 2 V � � V � : ku� vk = 1( s ; (x0; y0; 0) )( (x0; y0; dmax) ; t ) : x0 2 [0 : : : x0max]y0 2 [0 : : : y0max]Being six-connected instead of four-connected, eachvertex of the new problem is not only connected to itsneighbors along the epipolar line (in depth), but alsoacross adjacent epipolar lines (see Figure 4). Since dy-namic programming is not possible in this situation,we can instead compute the maximum-ow betweenthe source and sink. The set of edges that are satu-rated by the maximum-ow represent a minimum-cutof the graph. This cut separates the source and sinkand e�ectively represents the disparity surface sought.We de�ne the edge capacities in the graph in astraightforward way. The matching cost is used di-rectly as a capacity. Since a likely match has a lowmatching cost, the corresponding edge capacity willbe low and that edge is likely to be saturated by themaximum-ow. Inversely, a high matching cost yieldsa high capacity edge which is unlikely to be saturated.Since a vertex in the graph correspond to a poten-tial match, we can use Equation 2 to derive its match-ing cost. The capacity of an edge is derived from thematching cost of the two vertices that it links. We ar-bitrarily de�ne the edge capacity function c(u; v) be-tween vertices u and v from Equation 2 asc(u; v) = cost(u) + cost(v)2 (3)where cost(u) is used for simplicity instead ofcost(p00; d) since u is a match and de�ned by its as-sociated point p00 and disparity d. In fact, since anedge links to vertices that each represent a speci�c3-D match, it corresponds itself to a line segmentin each inspection image. The obvious improvementto the edge capacity function is to derive it directlyfrom these line segments. The average of two verticesmatching cost is just a heuristic that works quite wellin practice.4.1 Expressing smoothness through edgecapacityIn order to control the level of smoothness of thedisparity map, it is important to di�erentiate betweentwo kind of edges. As depicted in Figure 5, an edgeoriented along the disparity axis is called a disparityedge while all other edge orientation are called occlu-sion edge. It will be shown later that the capacity ofocclusion edges directly controls the level of smooth-ness. Edges adjacent to the source or sink are notclassi�ed and have in�nite capacities. We havec(u; v) = 8><>: 0 if (u; v) =2 E1 if u = s or v = tcdisp(u; v) if (u� v) = (0; 0;�d)cocc(u; v) if (u� v) = (�x;�y; 0)where cdisp(u; v) is the capacity of a disparity edge (oriented along the d axis ) while cocc(u; v) is an occlu-sion edge (oriented along the x or y axis). In Figure 5,
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Figure 6: Example cuts for di�erent smoothness val-ues. k = 0, maximal discontinuity. k = 1, intermedi-ate smoothness. k =1, in�nite smoothness.the darker edges (connecting the black vertices) areocclusion edge while lighter edges disparity edges. Wede�ne these costs from Equation 3 ascdisp(u; v) = cost(u)+cost(v)2cocc(u; v) = k cdisp(u; v) (0 � k � 1)where k is a smoothness parameter. A higher occlu-sion cost (i.e. larger k) increases the smoothness ofrecovered surfaces while, inversely, a lower occlusioncost facilitate depth discontinuities.To illustrate the e�ect of the smoothness parameterk, we created an example 2-D problems with a sim-ple cost function, as shown in Figure 6. For referencepurposes, a minimum-cost path linking the left andright sides of the graph was computed using standarddynamic programming and is displayed as a chain ofwhite dots. The maximum-ow was computed in thisgraph for smoothness values 0, 1, and 1 and the cor-responding minimum-cut are displayed as sets of thickblack edges. These extreme values of the smooth-ness parameter k have intuitive consequences. When

k = 1, the resulting disparity surface is at (max-imally smooth) and features a single disparity valuefor the whole image. Setting k = 0, each column ofthe graph is independently given a disparity, thereforeachieving maximal discontinuity in the disparity sur-face. For k = 1, at the top of Figure 6, a balance isreached and the minimum-cut corresponds very wellto the minimum-cost path computed by dynamic pro-gramming.4.2 From a cut to a disparity surfaceIt is well known that once the maximum ow isfound, a minimum-cut C separates the source and sinkin such a way that the sum of edge capacities of Cis minimized. This cut is therefore the optimal wayto separate the source and the sink for the particularcost function. Since the source is connected to theclosest points while the sink is connected to the deepestpoints, the cut e�ectively separates the view volumeinto a foreground and background and yields the depthmap of the scene. The minimum cut is also guaranteedto provides a depth estimate for each image point, asdemonstrated by Property 1.Property 1 (cut as a depth map)Consider a cut C associated with some ow in thegraph G = (V;E). For all (x; y), there exist at leastone d such that the edge (x; y; d)� (x; y; d+1) is partof C.Proof. For any (x; y), there is a path s ; t in G ofthe forms! (x; y; 0)! (x; y; 1)! : : :! (x; y; dmax)! ttherefore containing the set of edges( s! (x; y; 0)(x; y; d)! (x; y; d+ 1) d 2 [0; dmax � 1](x; y; dmax)! t )Any cut of G must break this path and thus containat least one edge of the form (x; y; d) � (x; y; d + 1)since the edges s! (x; y; 0) and (x; y; dmax)! t havein�nite capacities. 2According to property 1, a depth map can be con-structed from the minimum-cut C of graph G as fol-low. For each point (x; y), the disparity is the largestd such that the edge (x; y; d)� (x; y; d+1) belongs toC. This results in the desired global disparity surface.4.3 Solving the Maximum Flow problemThere is an abundant literature on algorithmsto solve the maximum-ow problem [9, 10]. Forthis paper, we implemented a well known algorithm,preow-push lift-to-front (see [9]). Currently, the bestmaximum-ow algorithm is presented in [10] and isparticularly well suited for sparse graphs like the onesbuilt for stereo matching.The number of vertices v in the graph is equal to thenumber of image pixels multiplied by the depth reso-lution. For an image of size n pixels, i.e. of dimensionapproximately pn �pn, and a depth resolution of d
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Figure 7: A) Performance as a function of image sizen in pixels, for �xed depth resolution. B) Performanceas a function of depth resolution d for a �xed size n.Three dotted lines show performance levels of O(pn),O(n), and O(n2).steps, we have v = nd. Since the graph is a three-dimensional mesh where each vertex is six-connected,the number of edge e is e = O(V ) = nd.This implies that the preow-push algorithm used,with a running timeO(ve log(v2=e))yields a running time ofO(n2d2 log(nd))The new best bound [10] runs inO(e 32 log(v2=e) log(U))where U is the largest edge capacity, yields a runningtime of O(n1:5d1:5 log(nd) log(U))The dynamic programming approach on separateepipolar lines [3] requires a total running time of�(nd), which might seem much better than themaximum-ow algorithm. However, the topology ofthe graph, the position of the source and sink, and thestructure of edge capacities all tend to make the prob-lem easier to solve, making the average running timemuch better than the worst case analysis. Figure 7shows the typical performance as a function of totalimage size n (in pixels) and depth resolution d. Theaverage running time is O(n1:2 d1:3), which is almostlinear with respect to image size n (in pixels) and com-pares favorably with the dynamic programming ap-proach. The typical running time for 256�256 imagesis anywhere between 1 to 30 minutes, on a 160Mhzpentium machine, depending on the depth resolutionused. While this is considerably slower than [3], thealgorithm was not optimized for speed. Performanceimprovement are expected in the future.5 Experiments and resultsIn this sections, results of binocular and N -camerastereoscopic matching from maximum-ow are pre-sented and compared with two other algorithms.
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shrub−15Figure 8: Disparity maps for the Shrub a two preci-sion level (32 and 128 disparity steps). On top, themaximum-ow and MLMH+V results. At bottom, theoriginal image shrub-15 and results for standard stereo.First, the algorithm referred to as standard stereouses line-by-line dynamic programming on N -camerawith variable depth resolutions. It di�ers from themaximum-ow algorithm only in the way it solve thedisparity surface. They are otherwise identical andtheir results use the same disparity scale and are notequalized.Second, the algorithm referred to as MLMH+V isthe e�cient dynamic programming implementationfrom [3] (for the binocular version) and from [6] (forthe N -camera version). It performs an iterative opti-mization of its disparity solution to enforce smooth-ness across disparity lines. It should be noted thatthe results from this algorithm use a di�erent dispar-ity scale (gray levels) than maximum-ow or standardstereo and are equalized to improve their contrast.ShrubFigure 8 shows one image of a pair of the Shrub imagesequence (courtesy of T. Kanade and T. Nakahara ofCMU), along with some matching results. These re-sults show how maximum-ow tends to extract sharpand precise depth discontinuities, while standard stereoand MLMH+V produce many artifacts along verticaldepth discontinuities. Two level of depth resolutionsare shown (32 and 128 steps) with di�erent level ofsmoothness. It is notable that even at high smooth-ness levels, maximum-ow does not produce spurioushorizontal links across the gap between the two largershrubs. The results of multiple-camera analysis isshown in Figure 9. All the images of this sequenceshare a common horizontal baseline. Even if the al-gorithms use di�erent number of images (4 and 7),the total spanned camera displacement is the sameand therefore provide about the same depth discrim-ination. Some image normalization is performed forMLMH+V prior to matching. None was used for theother two algorithms.
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Figure 9: Disparity maps for the 4 and 7 images Shrubsequence. Both sequences span the same total hori-zontal displacement and should yield similar results.White points on the right denote detected occlusions.
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Figure 10: Disparity maps for the Pentagon stereopair.PentagonThe left image of the stereo pair Pentagon is shownin Figure 10, along with the matching results. Thisstereo pair presents some challenge since the truecamera motion is not exactly horizontal and containsome rotation, creating image motions that violatesthe epipolar constraint. Fortunately, algorithms likeMLMH+V resist better to these misalignment sincethey allow negative disparities as well as positive. Thisexplains how the highway structures at the top leftare well recovered for MLMH+V while the other algo-rithms produced some noticeable spurious mismatch.A predicted, maximum-ow does produce a more sym-metric result, with less spurious horizontal streaks.Park meterThe image sequence Park meter shown in Figure 11was analyzed for di�erent number of images. Here anumber of vertical objects put in evidence the di�cul-
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Figure 11: Disparity maps for the Park meter sequence.Results are shown for 2 and 4 image sequence. TheMLMH+V result is shown for 2 images.
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MLMH+V
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castle−0Figure 12: Disparity maps for the Roof sequence. Re-sults are shown for 7 and 13 images, respectively.White points on the right denote detected occlusions.ties that standard stereo and MLMH+V have to relatehorizontal epipolar lines solutions together. No hori-zontal streaks are present in maximum-ow. Using 4images (horizontally displaced along a single baseline),the results at the bottom of Figure 11 improve sensi-bly from those at the top. No results were availablefor MLMH+V.RoofThe image sequence "Roof" (courtesy of T. Kanadeand E. Kawamura of CMU) is shown on the left of Fig-ure 12. It contains 13 images featuring either horizon-tal or vertical translations. The results for maximum-ow and MLMH+V are presented at the right. Thedisparity map obtained by maximum-ow is very de-tailed. In particular, the structure of the roof is wellreconstructed. Note that only 7 horizontally separatedimages were used by maximum-ow because the exactamount of vertical displacement of the remaining 6images was not available.CastleThe sequence Castle from CMU is shown on the left ofFigure 13 and contains 11 images with various com-binations of horizontal, vertical and forward camera



c06 max−flow
(11 images)Figure 13: The Castle image stereo sequence. On theleft, one of the 11 images. On the right, the resultingmaximum-ow disparity map.

k = 1 k = 1/10 k = 0Figure 14: Disparity maps for the Shrub sequencefor 3 smoothness levels. On the left, k = 1 enforcehigh smoothness. In the middle, k = 1=10 is mediumsmoothness. On the right, k = 0 enforce no smooth-ness.motion. The 11 images were used to create the dis-parity map shown on the right. A high level of detailand very few spurious matches are present. Noticethat the white background is recovered correctly re-gardless of its lack of texture.It is important to note that this sequence representa challenge since the actual disparity range, i.e. thedi�erence in disparity between the closest and the far-thest object, is only 2.7 pixels. Performed at a depthresolution of 96 steps, this implies that the disparityprecision achieved is 0.03 pixels.5.1 Level of SmoothnessIn this section, we wish to illustrate how the levelof smoothness, represented by the parameter k of Sec-tion 4.1, can a�ect the quality of the disparity maprecovered. Figure 14 illustrates this for three level ofsmoothness, namely k = 1, k = 1=10 and k = 0.For k = 0, the capacity of occlusion edges is zero andtherefore each pixel is given a disparity independentlyof its neighbors. It is essentially equivalent to �ndingthe best disparity by correlation over a single pixelwindow (on the right of Figure 14).As expected, lowering the occlusion capacitiesfavors depth discontinuities and therefore createssharper object edges, at the expense of surfacesmoothness.It is observed that large depth discontinuities tendto stay sharp as the level of smoothness increases. Thisis probably due to the fact that the smoothness is ex-pressed in all direction instead of only along epipolarline. This result di�ers strongly frommost other meth-ods where a high level of smoothness induces blurredor missing depth discontinuities.

6 ConclusionWe presented a new algorithm for establishing N -camera stereo correspondence, based on a reformu-lation of the stereo matching problem to �nding themaximum-ow in a graph. Representing a generaliza-tion of dynamic programming along epipolar lines tothe global matching space, it is able to solve optimallyfor the full disparity surface in a single step, there-fore avoiding the usual disparity inconsistencies acrossneighboring epipolar lines. The ordering constraint,required for dynamic programming, is replaced with amore general local coherence property that applies inall directions instead of along epipolar lines. The newstereo problem formulation naturally supports mul-tiple arbitrary cameras and can estimate depth foran arbitrary virtual camera. For any desired level ofsmoothness, depth discontinuities are well preservedsince smoothness is applied in all directions instead ofonly along epipolar lines.As for future research, there are many avenues opento improve the maximum-ow formulation proposed inthis paper. In particular, a multi-resolution approachas well as local smoothness variations could be directlyembedded in the graph, improving performance anddepth map quality. The edge capacity computationcan also be improved (as discussed at then end of Sec-tion 4) by directly comparing image line segments in-stead of single pixels.References[1] H. H. Baker. Depth from Edge and Intensity BasedStereo. PhD thesis, University of Illinois at Urbana-Champaign, 1981.[2] Y. Ohta and T. Kanade. Stereo by intra- and inter-scanline using dynamic programming. IEEE Trans.Pattern Analysis and Machine Intelligence, 7(2):139{154, 1985.[3] I. J. Cox, S. Hingorani, B. M. Maggs, and S. B. Rao. Amaximum likelihood stereo algorithm. Computer Vi-sion and Image Understanding, 63(3):542{567, 1996.[4] O. Faugeras. Three-dimentional computer vision.MIT Press, Cambridge, 1993.[5] P. N. Belhumeur. A Bayesian approach to binocularstereopsis. Int. J. Computer Vision, 19(3):237{260,1996.[6] I. J. Cox. A maximum likelihood N -camera stereoalgorithm. In Proc. of IEEE Conference on ComputerVision and Pattern Recognition, pages 733{739, 1994.[7] S. B. Kang, J. A. Webb, C. L. Zitnick, and T. Kanade.An active multibaseline stereo system with real-timeimage acquisition. Technical Report CMU-CS-94-167,School of Computer Science, Carnegie Mellon Univer-sity, 1994.[8] T. Kanade, A. Yoshida, K. Oda, H. Kano, andM. Tanaka. A stereo machine for video-rate densedepth mapping and its new applications. In Proc. ofIEEE Conference on Computer Vision and PatternRecognition, San Francisco, 1996.[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-troduction to Algorithms. McGraw-Hill, New York,1990.[10] A. V. Goldberg and S. B. Rao. Length functions forow computations. Technical Report 97-055, NECResearch Institute, Princeton NJ, 1997.


