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Abstract

Multimedia projectors and cameras make possible the use
of structured light to solve problems such as 3D reconstruc-
tion, disparity map computation and camera or projector
calibration. Each projector displays patterns over a scene
viewed by a camera, thereby allowing automatic computa-
tion of camera-projector pixel correspondences. This pa-
per introduces a new algorithm to establish this correspon-
dence in difficult cases of image acquisition. A probabilis-
tic model formulated as a Markov Random Field uses the
stripe images to find the most likely correspondences in the
presence of noise. Our model is specially tailored to han-
dle the unfavorable projector-camera pixel ratios that oc-
cur in multiple-projector single-camera setups. For the case
where more than one camera is used, we propose a robust
approach to establish correspondences between the cam-
eras and compute an accurate disparity map. To conduct
experiments, a ground truth was first reconstructed from a
high quality acquisition. Various degradations were applied
to the pattern images which were then solved using our
method. The results were compared to the ground truth for
error analysis and showed very good performances, even
near depth discontinuities.

1. Introduction

Coded structured light is an active computer vision
method employing multimedia projectors and cameras to
solve problems such as camera or projector calibration [9],
3D reconstruction [5, 11, 10, 4] and disparity maps compu-
tation [14]. It encodes the position of each projector pixel
with one or many patterns projected over some surface im-
aged by a camera. Those images are combined to recover
the code and thus pixel correspondences between the cam-
era and the projector. Many kinds of structured-light sys-
tems have been described, and a good overview is presented
in [1, 12]. Errors in the correspondences occur from noise in
the images and, in some cases, ambiguities in the patterns
themselves. Indeed, solution usually make a compromise
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Figure 1. Projected patterns for bits 3, 2, 1, 0 in x di-
rection for T = 4 . Inverse patterns and those used
for the y direction are not shown.

between the quality of the correspondences and the acqui-
sition time (related to the number of patterns) [8, 3, 2]. The
use of many cameras can also increase the pattern decoding
robustness [7].

Most industrial scanners require a controlled environ-
ment to work properly. In some cases, the nature of the
scene imposes a hostile environment which makes the scan-
ning much more difficult. Also, today’s systems usually
assume that the camera-projector pixel ratio (the number of
pixels of the projector seen by only one pixel of the cam-
era) is around one. But this is not always true. For in-
stance, structured light based multiple-projector systems, in
which the pixel ratio decreases as the number of projectors
increases, were demonstrated [15, 19]. Also, as these sys-
tems become less costly and more widely available, support
for poor camera quality and bad environment is needed. A
more robust structured light approach should be developed
for those situations.

This paper introduces a new algorithm to establish cor-
respondence in difficult cases of image acquisition. A prob-
abilistic model formulated as a Markov Random Field uses
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stripe images to estimate the most likely correspondences
in the presence of noise. Our model is specially well-suited
to handle the unfavorable projector-camera pixel ratios that
occur in multiple-projector single-camera setups. Other
degradations can be caused by low contrast due to strong
ambient light, high image noise from low quality cameras,
and also weak projector lamps or large scanning distances.
The probabilistic nature of these degradations justifies the
use of such a model.

Generally, the evaluation of the correspondence accuracy
requires the use of calibrated camera, projector and refer-
ence object. To avoid this task, we used multiple uncal-
ibrated cameras to compute disparity maps. These maps
can be used directly to evaluate performance and could
be used to compare to passive stereo methods [13]. We
propose a robust approach to compute the disparity from
many camera-projector correspondence maps. In our exper-
iments, a ground truth disparity map was first reconstructed
from a high quality acquisition. Various degradations were
applied to the pattern images which were then processed us-
ing our method. The results were compared to the ground
truth for error analysis.

The article proceeds as follows: first we introduce the
structured-light approach we chose; next we introduce the
model for code correction; then we show how to build
multiple-camera disparity maps; finally, some results are
shown and discussed.

2. System overview

To illustrate how a Markovian model can be used to
achieve code correction, we present a complete structured
light system. We deliberately chose a simple system in or-
der to demonstrate more clearly the effectiveness of our re-
construction model, but it should also be directly applicable
to other systems. In our case, the projected patterns are hor-
izontal and vertical black and white stripes to allow an ar-
bitrary projector/camera configuration. Inverse patterns are
also used to increase the robustness of the decoding. This
decoding defines the initial measurements for the camera-
projector correspondences. In our model, they are the most
likely values. However, errors can occur, so we show how
to compute a confidence value associated to every bit. It
is used to define a Markov Random Field for which the
most likely configuration can be determined using the It-
erated Conditional Mode (ICM) algorithm.

3. Complete structured light system

The complete encoding of a pixel position is done us-
ing multiple patterns. To simplify notation in this paper,
we assume the projector image is square and its width is
representable with T bits. A position (x, y) is encoded in-

dependently in each dimension so we illustrate our method
using a single coordinate, say the x one.

In order to define our structured light patterns, we define
the binary encoding of a pixel α of the projector as:

P (α) = αs ⊕ αs

where αs is the binary encoding of α, αs the binary com-
plement of αs and ⊕ the concatenation operator. We also
define P t(α) as the tth bit of P (α). The color of α in the
pattern t is white if P t(α) is 1 and black if it is 0. This
encoding corresponds the projection of patterns as shown
in figure 1 and the binary complement formalizes the use
of inverse patterns to increase robustness in the decoding
process (section 3.1).

Subtraction of an image from its inverse and threshold-
ing is the basic way to discover the value of a bit. Unfor-
tunately, uncertainties occur when the difference becomes
very small. This typically happens when the contrast in the
images is low or when a border between stripes is projected
onto a single pixel. This basic encoding has the drawback of
keeping many stripe borders aligned which can make many
bits uncertain in a single code. To correct this, we rely on
Gray encoding [17] which minimizes the encoding’s bit-
wise difference between spatial neighbors in the projector
image. For example, if we consider two projector pixels
having x coordinates 127 and 128. The use of Gray encod-
ing changes their binary representations from 0111111 and
1000000 to 0100000 and 1100000, thus reducing the num-
ber of stripe borders located between these pixels from 8 to
1. The encoding becomes:

P ′(α) = G(αs) ⊕ G(αs)

where G is defined as:

G(αs) = αs xor (αs >> 1)

and >> is the right bit shift.

3.1. Pattern decoding

This step builds the first estimate of the correspondence
of each camera pixel to a projector pixel and computes a
confidence measure based on the observed pixelwise con-
trast.

For each camera pixel β and each pattern t, an intensity
It(β) is measured. We define the image contrast as:

δ(β) = max
t

(

It(β)
)

− min
t

(

It(β)
)

.

The Gray code correspondence can then be recovered with
a simple image difference:

C(β) =

0
⊕

t=T−1

Bin
(

It(β) − It+T (β)
)
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where

Bin(a) =

{

1 if a > 0
0 otherwise

(the decreasing index of the concatenation simply reflects
the fact that the most significant bits appear first). Note that
no thresholding is done at this step. However, a threshold is
used to build a confidence mask for the measurement:

Hβ =
{

Conf
(

It(β) − It+T (β), β
) }0

t=T−1

where

Conf(d, β) =

{

1 if |d| > Kcδ(β) and δ(β) > Kr
1
2 otherwise.

(1)
Ht

β is the probability we determine for the tth bit of the
Gray code of β’s projector x-coordinate to be equal to
Ct(β), the tth bit of C(β). The constants Kc = 1

2 and
Kr = 15 are conservative enough to insure that the contrast
is sufficiently high. These values rarely need to be changed
in practice. A confidence value can be seen as a probability
that the measurement can be trusted. Indeed, a value of 1
means that the bit was unambiguously recovered and a value
of 1

2 means total uncertainty. Finally, the number of 1’s in
Hβ indicates the overall quality of the code recovered for
pixel β. Accordingly, the Boolean value:

Cv(β) =
{

1 if the # of 1’s in Hβ ≥ T − max(log2 ρ, 0) − 1

0 otherwise

where ρ is an estimate of the smallest pixel ratio between the
projector and its image in the camera and “−1” is plainly a
margin of error. This function determines if β was suffi-
ciently illuminated by the projector.

The value of C(β) is the most likely value of the pro-
jector correspondence of β. In ideal situations, this value is
close to being exact, but most of the time many errors occur.
The next section explains how the codes can be corrected.

3.2. A Markovian model for code correction

The low confidence in certain bits of a correspondence
can result from two factors. The first is the projection of
a border onto a pixel. Even though this occurs more fre-
quently for low order bits, it can actually happen at any
level. Fortunately, even if high order bits weren’t recov-
ered for a pixel, there is a good chance they were for its
neighbors. When all of them have the same value for some
bit, chances are this is the right value for the current pixel
too.

The second factor is related to the pixel ratio between the
camera and the projector. For similar resolutions, if the area
covered by the projector is smaller than that covered by the

camera, low order bits cannot be recovered. In this case,
the neighbors are of no help. However, a hypothesis can be
made, that the object surface is locally smooth, and thus the
codes as well. In most cases, with the use of Gray codes,
only a small number of bits of a correspondence will be
uncertain. The scheme we present tries to find the code that
best satisfies these assumptions. The Markovian approach
is known to be well adapted to solve this type of problems.

We represent the camera image by a graph G = (B,N).
A site β ∈ B is a pixel with a value of Cv(β) equal to 1.
Each site’s neighborhood Nβ is the usual 8-neighborhood
(possibly consisting of less than 8 elements). The labels
are the 2T possible values of the coordinate in the projector
image. When a value is associated to each site, the Marko-
vian field M is in a configuration m whose probability is
function of the measured code C. Given its computed value
c, we are looking for the most likely value of M . In the
following, we use Ct

β for Ct(β) to increase the equations
compactness. We have:

P (M = m | C = c)

∝ P (C = c | M = m) · P (M = m)

∝





∏

β∈B

P (Cβ = cβ | Mβ = mβ)



 · P (M = m)

(if we suppose pixel- and bitwise independence)

∝





∏

β∈B

T−1
∏

t=0

P (Ct
β = ct

β | M t
β = mt

β)



 · P (M = m)

∝





∏

β∈B

T−1
∏

t=0

P (Ct
β = ct

β | M t
β = mt

β)





∏

β1∈B

β2∈Nβ1

e−ξV (mβ1
,mβ2

)

where V is the smoothing cost function and ξ a smoothing
factor. Taking minus the log, this is equivalent to minimiz-
ing directly the cost function:

−
∑

β∈B

T−1
∑

t=0

log P (Ct
β = ct

β | M t
β = mt

β)+ξ
∑

β1∈B

β2∈Nβ1

V (mβ1
,mβ2

)

(2)
w.r.t. m. The value of P (Ct

β = ct
β | M t

β = mt
β) is modeled

using the confidence that was recovered previously. This
can be expressed as:

P (Ct
β = ct

β | M t
β = mt

β) ∝

{

Ht
β if ct

β = mt
β

1 − Ht
β otherwise.

(3)
The corresponding likelihood of getting a value of 1 as a
function of the intensity difference is shown in figure 2a.

Defining V (β1, β2) =
∣

∣G−1(β1) − G−1(β2)
∣

∣, where
G−1 converts a Gray code to its real value, is a logical
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Figure 2. Likelihood that a recovered bit is 1 as a
function of the intensity difference d of the two cor-
responding patterns, based on a) eq. 1 and b) eq. 4.

Camera Projector

considered pixel best solution

Figure 3. For a pixel whose x projector correspon-
dence has uncertain low-order bits 0 and 1, four solu-
tions are possible (empty circles). According to our
model, the most likely code minimizes the average
distance to its neighbors (only the 4-neighborhood is
shown for clarity).

choice. The effect of the smoothing term is that it favors
codes that are in between those of the neighbors (figure 3).
Unfortunately, it is not clear what PDF corresponds to this
relation. .

Another definition clarifies the effect of the confidence
and matching cost functions. For a given pixel β, a code ν

is said to be compatible if it is identical to µ = C(β) for the
bits unambiguously recovered. This can be expressed as:

Comp(β, µ, ν) =

{

1 if ∀ t such that Ht
β = 1 : µt = νt

0 otherwise.

From eq. 1 and 3, we see that all compatible codes have
equal matching costs and that all the others have probability
0. This means that the correct code must be compatible.
In practice, this function can be used for the optimization
to reject labels without computing the cost function. Also,
note that when using eq. 1 in the MRF, multiplying ξ by any
positive constant does not alter the amount of smoothing.

More sophisticated approaches can be used. Indeed,
even when a certain bit of a code has low confidence, the

value found by image difference is still more likely than its
complement. A simple model for this is illustrated in figure
2b. The closer to zero this difference is, the more ambigu-
ous the value becomes. The confidence function related to
figure 2b is:

Conf(d, β) =







1 if δ(β)>Kr and |d|>Kcδ(β)
1
2 if δ(β) ≤ Kr

|d|+Kcδ(β)
2Kcδ(β) otherwise

(4)
where Kc and Kr are the same as in equation 1. Finally, an-
other confidence measure could be used without resorting to
thresholding; all labels would have non zero probabilities.
Unfortunately, minimizing the corresponding function is far
too complex in practice.

Cost functions such as eq. 2 are generally not too diffi-
cult to minimize globally and efficiently. However, in our
experiments, the image resolution and the number of labels
are overwhelming. Resolution by ICM yields convincing
results within a reasonable computational time (see section
7 for details), even though only a local minimum is found.

4. Projector-to-camera correspondences

The projector-to-camera correspondence map is used for
image construction in a multiple projector system [15] and
also for disparity map construction (section 5). It is built
by inverting the camera-to-projector mapping obtained by
structured light. This inverse function is not easily deter-
mined. In our experiments, we were using a camera and a
projector with similar resolutions. Since the surface illumi-
nated by the projector was contained inside the camera im-
age, only a sampling of all the codes could be achieved. In
the projector domain, this means that not all projector pixels
have a corresponding camera pixel, which creates holes in
the inverse map. One way to fill these holes is to use inter-
polation. One must find a scheme with a solid geometrical
interpretation that performs well in terms of accuracy and
execution time.

A first scheme uses homography-based interpolation.
This assumes that camera and projector models are linear
for small areas of the image, and that the object surface can
be approximated locally by a small planar patch. The cam-
era image is divided into 4-pixel patches reprojected in the
projector image onto the correspondence points. Then, if
some projector pixel is located inside this patch, its value is
calculated from a homography defined with the four corners
of the patch.

Another scheme presented in [15] uses triangular patches
with bilinear interpolation. The geometric interpretation is
less intuitive, but it has been used successfully in appli-
cations where small inaccuracy could be tolerated. This
scheme is specially useful when a fast implementation over
a GPU is necessary.
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Figure 4. Percentage of exact correspondences be-
tween two cameras w.r.t. pixel ratio between the pro-
jector and its image in the cameras.

The result of the inversion is that for each pixel α of the
projector, a corresponding camera pixel C−1(α) is defined.
When a reconstruction is very well recovered, the relation
C(β) = C−1(C(β)) should be valid for all pixels β illumi-
nated by the projector. This does not occur in practice, be-
cause of errors in the reconstruction and because the pixel
ratio can be smaller than one.

5. Disparity map construction

Without calibration of the cameras and projectors, it is
impossible to achieve a full 3D reconstruction of the scene.
However, it is possible to build simple disparity maps [14].

The basic approach for disparity map construction is to
use some camera as the main view. A pixel β of this cam-
era and its correspondence β′ in another camera j both have
the same x and y projector codes. Their image distance is
the disparity. Estimating camera-camera correspondences
amounts to locating common projector codes. For known
epipolar geometry, this is done with a linear search, other-
wise, a 2D search is needed. This process can be very long
for large images. Also, when the pixel ratio is smalle than
one or when a lot of errors occur in the correspondences,
some codes are not present in the other images. Figure 4
illustrates the percentage of pixels in an image that have an
exact correspondence pixel in another image, as a function
of the camera-projector pixel ratio. As expected, almost all
codes are available for pixel ratios larger than 2, but become
scarce for low ratios. In this case, direct estimation of dis-
parity is unusable.

A more robust approach is to use the inverse correspon-
dence map presented in section 4. Let us define the cor-
respondence of projector pixel α in camera j as C−1

j (α).
Therefore, the pixel in camera j corresponding to pixel
β of camera 0 is simply C−1

j (C0(β)). Because the in-
verse mapping function is interpolated, it allows code in-
terpolation. For perfectly reconstructed scenes, C0(β) =
Cj(C

−1
j (C0(β))) should be true.

For many cameras located on a single baseline without

any rotation, we compute the disparity of a pixel β of cam-
era 0 w.r.t. camera j as:

D0,j(β) =
1

n
dist(0, j)

n
∑

i=1

∥

∥β − C−1
i (C0(β))

∥

∥

dist(0, i)

where dist(0, j) is the distance between the two cameras’
optical centers. A correspondence for one camera is not
used when the error between correspondence codes is too
large. In our experiments, we rejected a correspondence
when the distance was above 2 pixels. Rejection of corre-
spondences for all cameras results in unknown disparity for
this pixel.

6. Validation

Validation of a structured light system is difficult and
sometimes involves precise setup and calibration. A full 3D
reconstruction of a perfectly known scene can be used for
error analysis. In the context of poor image acquisition, we
propose a different approach to test the quality of the corre-
spondences. A scene containing two parallel and overlap-
ping planes was carefully reconstructed in a controlled envi-
ronment (constant ambient lighting) with a powerful XGA
1024×768 projector of 2000 lumens and a low-noise Basler
A201bc cctv 1008 × 1018 camera. Each plane featured a
checkerboard texture of varying colors so the contrast in the
images is not uniform. A disparity map was computed using
one camera moved to six locations on a single baseline. Its
accuracy was high enough to be considered as our ground
truth. Pictures of the two planes, the disparity map and one
sample slice are shown in figure 7.

In previous experiments, we had observe that our algo-
rithm performs much better than classical approaches in the
presence of high noise. We also wanted to show that signif-
icant improvements could be achieved in better, more real-
istic conditions. In order to do this, we measured the noise
induced in the pattern images when compression is turned
on, as it commonly is on low quality cameras (cf. figure 5).
Than in our tests, we corrupted the images with Gaussian
noise of mean 0 and standard deviation 2, a smaller value
than the previous measurement. In addition, we gradually
reduced the images contrast by K percent (cf. figure 6).

Four algorithms were tested with gradually decreasing
contrast to increase correspondence errors. We recovered
the codes with each of them and built the disparity maps.
Codes and maps were compared to the ground truth. The
first algorithm (labeled P ) consisted solely in the recovery
of the codes without any further correction. In the second,
labeled Q, we used a simple low-pass filtering of the codes.
A 5×5 filter was empirically determined to be a good com-
promise between smoothing and discontinuity preservation.
Finally for the third and fourth, respectively labeled M1 and
M2, we tested our proposed Markovian approach with the
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Figure 5. Histogram of the noise in the pattern im-
ages compressed with MJPEG (compression ratio
around 10:1). The variance of the noise is higher than
that of the noise we added to test our algorithms.

(a) (b)

Figure 6. a) Zoom on a section of a non-corrupted
pattern. b) Same image with a 41% image contrast
reduction and added noise.

matching cost functions of eq. 1 and eq. 4. We used the
ICM algorithm to perform the optimization, moving ran-
domly from one pixel to another [6]. An operation consists
of computing the cost function for every possible code for a
given pixel and then select the best value. One iteration con-
tains a number of operations equal to the number of pixels
in the image. The configuration for which the cost func-
tion was minimum was kept and the process stopped after 7
consecutive iterations without improvement.

7. Results

Figure 8 gives the average error in pixels in the dispar-
ity maps and the recovered codes of each algorithm, as a
function of the contrast reduction K. This error is com-
puted as the euclidean distance between a recovered code
and the ground truth, meaning that errors for high-order bits
are worst than that for low-order bits. For the disparity error
(figure 8b), the only pixels considered are those for which
a disparity value was recovered. Figure 8c illustrates the
number of pixels kept for different values of K. We ob-
served that the Markovian approach is always superior to
raw codes (P ) and filtering (Q), particularly when the de-
coded patterns have a lot of errors. Moreover, the number
of rejected pixels is always smaller. It also came as a sur-
prise that the simpler model M1 performs as well as M2,
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Border of Plane 2

(a) (b)

100 200 300 400 500
x
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200

Disparity
Plane 1

Plane 2

(c)

Figure 7. a) Image of the two planes. b) Disparity
map reconstructed for the left camera. c) One slice of
the disparity map.

and sometimes better. For the latter, finding a good solu-
tion is more difficult when the codes are highly corrupted,
especially near discontinuities (figure 10). Moreover, each
iteration for algorithm M1 takes about 5 seconds, but takes
more than twice as much for M2, as the likelihood cannot
be precomputed because of memory limitations. For our
tests, convergence of ICM takes between 20 and 40 itera-
tions, and similarly for M1 and M2. The parameter ξ > 0
has no influence on the solution when using M1, but has a
big impact for M2. This is illustrated in figure 9, in which
we also observe that M2 never yields significantly better re-
sults as M1. A value ξ equal to 0 is equivalent to no code
correction. As ξ gets larger, the solution for eq. 4 gradu-
ally converges to the one obtained with eq. 1. We observe
that for a value above 0.02, the error is close to stable, and
above 0.05, the solutions are exactly the same. In our tests,
we used a value ξ = 0.04.

Figures 8 shows that even a small amount of error in the
codes (8a) can result in large differences in the disparity
maps (8b). These errors increase the number of rejected
correspondences (8c), yielding holes in the maps, as illus-
trated in figures 12 and 11 .

The results of the filtering algorithm (Q) are surprising.
Bad outliers occur frequently, and since they are not cor-
rected in any way, they introduce very large disparity errors
which appear as spikes in figure 12b. Consequently, filter-
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Figure 8. Performance as a function of contrast reduction K. a) Mean error in the recovered codes. b) Mean error in
pixels of the disparity maps. c) Number of pixels with a recovered disparity.
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Figure 10. Recovered codes for contrast K = 41% textured with a checkerboard image.
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Figure 9. Mean error in the codes w.r.t. the smooth-
ing parameter ξ. For ξ = 0, no correction is made to
the codes. For ξ ≥ 0.05, the choice of matching cost
function makes virtually no difference.

ing is suitable only in the absence of error in high order bits.
In fact, the filtering mechanism, unless combined with a ro-
bust pixel selection, always propagates the error of a pixel
to its neighbors instead of correcting it.

8. Conclusion

This paper presented a Markovian approach to coded
structured light reconstruction. We consider it is one step

toward widespread use of structured light in uncontrolled
environment with commonly available equipment. It per-
forms more robustly than conventional methods and recov-
ers accurate depth discontinuities. It was used successfully
to calibrate a large multi-projector screens used in a public
performance [16].

In the future, a more physically plausible model could be
investigated, but the increased computational burden might
prove unsurmountable.
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Figure 12. Horizontal slices of the disparity maps of figure 11. Pixels with unrecovered disparities are set to 0.
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