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Abstract—This paper proposes a novel permutation
formulation to the stereo matching problem. Our proposed
approach introduces a permutation volume which provides a
natural representation of stereo constraints and disentangles
stereo matching from monocular disparity estimation. It also
has the benefit of simultaneously computing disparity and
a confidence measure which provides explainability and a
simple confidence heuristic for occlusions. In the context of
self-supervised learning, the stereo performance is validated
for standard testing datasets and the confidence maps are
validated through stereo-visibility. Results show that the
permutation volume increases stereo performance and features
good generalization behaviour. We believe that measuring
confidence is a key part of explainability which is instrumental
to adoption of deep methods in critical stereo applications such
as autonomous navigation.

Keywords-Permutation; Stereo; Self-Supervised; Occlusions;

I. INTRODUCTION

Stereo matching and stereo depth estimation is the process
by which two simultaneously acquired images are put in
correspondence to estimate the depth of the captured scene.
This problem has been thoroughly investigated as it relates
to the human vision and has practical applications. The
depth estimation task has surged in popularity in recent
years especially for autonomous navigation tasks and their
associated datasets.

For many years, while they held the top positions on
leaderboards, deep network approaches to depth estimation
have had explainablity concerns. As vision systems are
becoming more accessible and better integrated in everyday
applications, stronger guarantees of their behaviour under
various scene conditions are expected. While failures in the
vision system of a smart vacuum cleaner pose little risks,
some devices such as autonomous vehicles require accurate,
explainable and generalizable stereo depth estimation.

As a reciprocal to explainability, we wish to explore
uncertainty in the context of disparity estimation. Der
Kiureghian et al. [11] identify aleatoric and epistemic
uncertainties as the two main types which are further
outlined by Kendall et al. [22] in the context of deep learning
models. While aleatoric uncertainty relates to uncertainty in
the observations, epistemic uncertainty captures situations
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Figure 1. Permutation matrix. Stereo correspondence between left and right
epipolar lines, with left disparity. Green object has disparity 2 and is closer
than both red and cyan objects. Darker pixels are left-occluded (red) or
right-occluded (cyan). The correspondence is represented as a permutation
matrix, and occlusions are derived from the sums along rows or columns.

not encountered in the training set. In the disparity
estimation, this uncertainty accounts matching ambiguity,
transparency, out-of-image matches and occlusions as
well as out-of-domain image distributions resulting from
generalization. Kendall et al. state that ”this uncertainty is
particularly important for safety-critical systems.”

The contributions of this work are in the context of self-
supervised approaches, where we propose a new natural
representation of stereo constraints. By complementing
the usual cost volume with a permutation approach for
matching, a confidence measure can be modelled in a
principled fashion as part of the stereoscopic process,
not as a secondary step or as an explicit loss. As
will be described, our proposed permutation volume and
its normalization will simultaneously enforce occlusion
modelling, disparity smoothness, and sharpness of depth
discontinuities. This process disentangles stereo matching
from monocular disparity estimation and extracts the stereo-
visibility information present in a cost volume.

II. PREVIOUS WORK

Estimating depth from color images is a long-
standing problem which has been studied extensively



with deep neural network approaches[26]. Most traditional
stereo matching algorithms boast two very interesting
characteristics which do not appear naturally in deep stereo
methods, namely that they are general and do not require
ground truth depth maps.

Most algorithms establish a matching cost from one
image to the other. This cost is very often based on the
difference in pixel colors [5] or on image gradients [25].
These costs are aggregated within a certain neighborhood.
Some methods use the sum of a fixed sized window at
constant disparity [25] while others add a weight to each
pixel within the window according to color similarity [45],
[43]. Local algorithms select the disparity with the lowest
matching cost [45], semi-global algorithms (SGM) solve for
disparity by combining multiple 1D dynamic programming
[19], global methods minimize a global energy function [5],
[37], [25], [43]. These key steps work without ground truth
and for most scenes.

A. Deep Disparity Estimation

Supervised deep methods tend to follow two general
frameworks [26]. The first is an encoder-decoder structure
such as FlowNet[12] and DispNet[32] which retrieve the
disparity as a regression task and the second is to mimic
traditional stereo with differentiable blocks. GC-Net [23]
uses a 4D feature volume and a soft-argmin process for the
disparity computation. GA-Net [46] proposes a semi-global
aggregation layer and a local guided aggregation layer as
ways to mimic the traditional stereo steps. The latest state-
of-the-art work by Cheng et al. [9] uses a neural architecture
search framework to model the general stereo matching
problem as a neural network architecture. It is possible
to improve the performance of models by simultaneously
solving for analogous concepts such as occlusions or optical
flow[48], [7], [31]. Many methods such OASMnet[27] and
OASM-DDS [28] model occlusions as a separate neural
network while others derive it from the disparity maps
[35]. Another way to improve performances is to smooth
the learning process with noise [30]. Combinations of
these methods can be done such as in [38] where the
trained LEAStereo[9] model is used in conjunction with data
augmentation.

B. Self-Supervised Disparity Estimation

In the absence of ground truth training data, self-
supervised (or unsupervised methods) are now proposed
as alternatives. Self-supervised deep stereo matching
approaches mainly rely on warping the left image from
the image pair with the recovered disparity map such that
the photometric difference between the warped left image
and the right image is minimized [49]. These methods
tend to introduce more geometric constraints in the image
reconstruction losses such as taking advantage of the
projective geometry and the spatial coherence [26]. This is

further refined by adding a left-right image consistency over
the recovered disparity map [16]. Some works generalize the
mapping function through a generative model and recover
the disparity map at an intermediate level [14]. Recently, the
warping function has been shown to be defined as parallax
attention maps [39], [40] or as an optimal transport problem
of the latent space between images [20].

III. PERMUTATION STEREO

The stereo matching problem, as depicted in Fig. 1,
estimates a pairing between two epipolar lines (here ”Left”
and ”Right”), and results in disparity values that express
the displacement between corresponding pixels (Fig. 1, left).
Notice that some pixels have no correspondence, as they
are occluded. In Fig. 1, dark-red pixels are ”left-occluded”
and dark-cyan pixels are ”right-occluded”. This phenomenon
occurs naturally in stereo because closer objects, with
their larger disparities, are hiding farther objects. This
pairing, or permutation, expresses stereoscopic disparities
and occlusions simultaneously for both the left and right
direction. This work proposes to express the traditional cost
between epipolar lines in a permutation form.

A. Disparity from a Permutation Volume

The stereo correspondence between two epipolar lines can
be expressed as a permutation matrix ∈ Rw×w, where w is
image width, as illustrated on the right of Fig. 1. Assigning
to each horizontal line i its own permutation Pi results in
a permutation volume P ∈ Rh×w×w, where h is the image
height.

A permutation allows a pixel to match any pixel on the
other line, thereby violating the stereo constraint stating
that only a range of disparity is allowed, and this range
is dictated by the camera geometry and the disparity dmax

of the closest expected object. For classical stereo geometry
(KITTI, SceneFlow, etc.), all valid disparities have the same
sign, representing the fact that objects should appear to move
left when the camera moves from left to right. It is easy to
enforce the disparity range by assigning 0 probability to all
invalid correspondences. Note that the permutation matrix
cannot represent the full disparity range for the leftmost
pixels of the left image, rows 1 to dmax, since some potential
matches are outside the right image.

Using permutations, stereo matching can be considered
as an optimal transport problem. In practice, this is
accomplished by, firstly, estimating a traditional cost volume
C and transforming it into an unnormalized permutation
volume C̄

Cy,x,d → C̄y,x,x−d (1)

and by, secondly, applying symmetric normalization which
yields P , the permutation volume.



Figure 2. (LEFT) The training architecture for permutation-based stereo matching. M) The stereo matching network. The losses are LP at various scales
and LLRC . (RIGHT) The stereo matching network in detail. A) The feature volume and projection operation, x2) upscaling of lower resolution cost
volume, +) concatenation, B) cost volume reshaping and padding, N) symmetric normalization

Doubly Stochastic Normalization. Traditional cost
volumes are usually normalized using a soft-argmax or
soft-argmin and then projected to the disparity map by a
weighted product over the disparity range. Quite similarly,
the permutation volume allows this with a normalization
which enforces that each permutation Pi is doubly stochastic
and orthogonal.

As stated by Emami et al. [13] the problem of learning
permutations is quite challenging since the number of
permutations grows factorially with the size of the problem.
Also, the permutation matrices prevent learning algorithms
from directly using backpropagation as they are not
differentiable. The Sinkhorn-Knopp algorithm is known to
map a square matrix to a doubly-stochastic matrix where
all rows and columns sum to one via iterative re-scaling.
Adams et al. [3] proposed the iterative projection operator
known as Sinkhorn normalization for learning doubly
stochastic matrices based ranking functions. They propose
an algorithm called Sinkhorn propagation which allows for
gradients to be computed on the Sinkhorn normalization
operator via backpropagation [3]. We propose to adapt
this matrix normalization such that it becomes symmetric,
by simultaneously normalizing columns and rows. We
refer to this iterative process as symmetric normalization,
Fig. 2(N), which yields the permutation volume P . Iterative
applications of this normalization ensures P gradually
becomes doubly stochastic.

P
(t=0)
i,j,k = exp(C̄i,j,k)

P t
i,j,k =

P t−1
i,j,k√∑

m P t−1
i,m,j

∑
m P t−1

i,j,m

(2)

where t indicates the iteration step.

Orthogonality and Confidence. Orthogonality is an
essential property of permutations, as it guarantees that
a correspondence is bijective, which is equivalent in the
context of stereo to the left-right consistency constraint [16],
i.e. if non occluded pixel a matches pixel b, then pixel b

matches pixel a. Therefore, we can enforce and measure
if correspondences satisfy a left-right consistency constraint
with orthogonality. The orthogonality of permutation Pi is
defined as Pi · P⊤

i = 1 where 1 ∈ Rw×w is the identity
matrix. Section IV-B will show how orthogonality can be
defined as a loss while it is naturally enforced through the
normalization.

An interesting property of orthogonality is that each
diagonal element of Pi · P⊤

i is the sum of a squared row
in Pi. These values are 1 when matches are bijective, but
closer to 0 when matches are occlusions or ambiguous. We
can therefore measure the confidence of the stereo matching
process as the sum of squared rows for the left confidence
and as the sum of squared columns for the right confidence,
as illustrated in Fig. 1.

This confidence map can be used as a measure that a given
pixel will be correctly matched to its target in the matching
image. As an example, a pixel in a textureless region
usually presents a lot of matching ambiguity, indicated in
the permutation by numerous low values. It will not satisfy
left-right consistency and will have a low squared norm
of its row. Similarly, the presence of low contrast or high
noise will also result in a low confidence. This means that
in the context of a permutation matrix, confidence encodes
matching ambiguity resulting from occlusions as well as
texture ambiguity. This is further detailed in Section. V.
The confidence map expresses uncertainties induced by the
stereo problem by providing information about the matching
process, not the uncertainties of the algorithm itself.

B. Smoothness and Sharpness

Many stereo matching algorithms struggle with the
representation of smoothness and sharp edges. It seems that
one concept can only be favoured at the expense of the other.
While smoothness wants adjacent pixels to bear the same
disparity, sharp edges require disparity to abruptly change
across depth discontinuities. A permutation matrix seems to
naturally encourage both properties simultaneously.

Symmetric normalization strongly constrains the solution.
The normalization for a pixel affects a whole row of the



image rather than individual pixels. This implies that a
strong match will propagate itself horizontally across the
disparity range to discourage incoherent or noisy matches.
Disparity map smoothing is also encouraged by promoting
orthogonality (Pi · P⊤

i = 1). Any depth discontinuity, even
small, induces an occlusion, so the constraint is best satisfied
(i.e. absence of occlusion) when all pixels share a common
disparity. When a discontinuity has to occur, there is no
incentive to spread the change across multiple pixels, so the
break will be clean, and objects will remain smooth.

IV. SELF-SUPERVISION ON THE PERMUTATION VOLUME

The main contribution of this work is the introduction
of a new formulation of the cost volume, the permutation
volume, and its associated normalization. In a single volume,
it naturally expresses both left and right disparity as well as
both left and right confidence maps.

Because of the simple relationship between the
permutation volume and the cost volume as defined
by eq. 1-2, P and its losses can be implemented without
allocating h × w × w space in memory by accessing C
as if it were P by using modified indices. Furthermore,
false matches outside the disparity range are prohibited by
setting probability to 0.

A. Training Architecture

Given an input stereo pair {IL, IR} ∈ R3×h×w, the
images are fed into a siamese feature encoder network with
a U-net architecture as displayed in Fig 2. This encourages
strong feature representation at multiple resolutions.

This feature encoder yields latent features at various scales
FLs, FRs ∈ R(f∗s)×(h/s)×(w/s) where f is the number of
features and s ∈ {20, 21, 22, 23} is the scale. These latent
features are then combined into a 4D feature volume V s ∈
R(2f∗s)×(h/s)×(w/s)×(dmax+1)/s by concatenating and where
dmax is the maximum number of integer disparities with an
initial value of 0. This step is shown as Fig. 2(A). The feature
volume is defined as

V s
i,j,k,d = Concat(FLs

i,j,k, F
Rs
i,j,k+d) (3)

The feature volume is then projected down to f
features with a 3D convolution block. This allows for the
concatenation of the prior cost volume obtained at lower
resolution. Fig. 2 displays this multiscale process where the
stereo matching serves as a module that refines the disparity
estimate with richer feature pairs at the corresponding scale
of the same resolution.

The siamese stereo matching network is a Resnet with
eighteen 3D convolution blocks. It yields a cost volume
Cs ∈ R(h/s)×(w/s)×(dmax+1)/s. This cost volume is the
traditional cost volume as used in many volumetric stereo
approaches. It is reshaped and padded, Fig. 2(B), into an
unnormalized permutation volume C̄s ∈ R(h/s)×(w/s)×(w/s)

according to eq. 1. Symmetric normalization, Fig. 2(N),

is applied and results in the permutation volume P s ∈
R(h/s)×(w/s)×(w/s).

B. Losses

The total loss for the training is defined as:

L =

∑
Ls

P

s2
+ λLLRC (4)

where LP and λLLRC are respectively the photometric loss
and the left-right consistency loss. The s2 imposes that
pixels contribute equally regardless of scale.

Photometric Loss. This loss refers to the similarity between
a reconstructed image and the input image from the
stereo pair while respecting the occlusion information. This
function is a combination of the structural similarity index
(SSIM)[41] and the L1-norm as defined in [7]. This loss is
furthermore adapted to the context of permutations which
allows to account for occluded and ambiguous pixels. The
occlusion handling scheme is introduced in [8] but our novel
model allows for continuous confidence maps and does not
require to duplicate the stereo matching process.

LP =

∑
L̄P ⊙O∑

O

L̄P =
α

2
(1− SSIM(IRi,j , I

R∗
i,j ) + (1− α)∥IRi,j − IR∗

i,j ∥1

IR∗
i = Pi · ILi

(5)

where the ⊙ operator indicates element-wise multiplication
and the ∗ operator indicates a permuted image. For ease
of reading, only the right-to-left photometric loss has been
detailed but both left-to-right and right-to-left are computed
and averaged. Moreover, we only define this loss for a
single scale but it is applied at every scale. The confidence
map computation is detailed in eq. 7.

Left-Right Consistency Loss. The left-right image
consistency is a staple loss in self-supervised stereo
matching [16]. With the permutation volume, it is possible
to model this round trip as Pi ·P⊤

i , computed from a single
stereo matching. In this way, the permutation volume can be
regularized.

LLRC = ∥Pi · P⊤
i − 1∥1 (6)

C. Disparity and Confidence Maps

From the permutation volume P , we use the weighted
product over the disparity range to solve for the left disparity
Di,j and compute the sum of squared rows to recover the
left confidence map Oi,j .

DL
i,j =

∑
d

Pi,j,j−d × d

OL
i,j = ∥Pi,j,:∥22

(7)



Figure 3. Stereo-visibility. Left image pixels, shifted by their disparity, hide
farther pixels, fully or partially. Out-of-boundary pixels are also considered
stereo-occluded.

This relationship also allows to trivially recover the right
image disparity and the right occlusion map.

Confidence Heuristic: To manage pixels which are
identified as part of an occlusion or have texture ambiguity,
the confidence map is necessary. Although it is impossible
to estimate the exact depth of an occluded pixel via stereo
matching, we propose a simple heuristic at low confidence
pixels. In the left image, pixels which have a confidence
value under the threshold τ are attributed a disparity which
comes from the closest high confidence disparity on their
left. This heuristic is inspired by the observation that an
occluded pixel tends to have the same disparity as its
neighbors on the left if it is occluded in the left image.
There are known monocular cues that could be used to fill
occlusions such as texture similarity, but this work chooses
the simplest heuristic. As a special case, left image pixels
with out-of-image matches are instead propagated from the
right.

Our heuristic is similar to GOAPP in [35] but instead uses
the confidence map which is not derived from the disparity
map but rather from the permutation volume. Also, some
work has previously been done to express entropy of the
stereo probabilities in [47] as a ”matchability” score. Our
confidence map and our heuristic leverage new information
about the matching process rather than simply correcting
incompatibilities in the disparity map.

In this paper, the usefulness of the confidence maps is
validated by using the simplest heuristic possible. It is
inspired by the simplest post-processing heuristics employed
in classical methods. We consider that using the most naive
occlusion handling approach makes it easier to highlight
the usefulness of the confidence maps recovered from the
permutation volume.

V. STEREO-VISIBILITY

We define a pixel as stereo-visible if it belongs to a
correspondence in the stereo image pair. It is well known
that objects that are closer hide objects that are further,
thereby creating an occlusion. An occluded pixel has no
correspondence in the other image, so it is not stereo-
visible, it is stereo-occluded. Furthermore, in the context of

stereo matching, we consider pixels that have their match
outside the other image boundaries as stereo-occluded. It is
possible to recover the map of stereo-visible pixels from the
groundtruth disparity map and it will be referred as a stereo-
visibility map. The KITTI dataset explicitly exposes out-
of-boundary correspondences in the ”noc” disparity maps,
but does not provide a true occlusion map. Other datasets,
such as SceneFlow, provide true occlusions but not out-of-
boundary matches. Computing a stereo-visibility map from
a disparity map is straightforward, and is depicted in Fig. 3.

We consider that pixels that are not stereo-visible can
only be solved by monocular depth estimation. Since
common datasets, such as KITTI or SceneFlow, do not
limit error computations to stereo-visible pixels, they
not only measure stereo performance, but also implicitly
include monocular disparity estimation performance. We
thus believe that stereo-visible regions can lead to a good
performance estimator of the stereo algorithm itself, while
the contribution of monocular depth estimation capabilities
can be best evaluated in stereo-occluded regions.

The confidence map aims to provide explainability for
the matching process. The permutation volume naturally
provides this information as a result of symmetric
normalization. Since high confidence pixels should be
stereo-visible, and low confidence should be either stereo-
occluded or feature an ambiguous texture, the stereo-
visibility map computed from ground truth can help assess
the usefulness of the confidence measure, as shown in
Tab. II.

VI. EXPERIMENTS AND DISCUSSION

The current work is interested in stereo matching
capabilities for real-world images such as the KITTI 2012
[15] and KITTI 2015 [33], [34] as well as learning and
generalization capabilities using very different stereo settings
such as SINTEL-final[6] and FlyingThings3D[32]. The
KITTI 2012 dataset has 194 training image pairs with 195
test image pairs with a pixel size of 1226×370. The KITTI
2015 dataset has 200 training image pairs with 200 test
image pairs with a pixel size of 1242× 375. The SINTEL-
final dataset has 1064 training image pairs with a pixel size
of 1024 × 436 with strong motion blur. It will be referred
as SINTEL for brevity. SceneFlow FlyingThings3D contains
21818 training image pairs with a pixel size of 960 × 540.
Section VI-B reports standard errors for KITTI 2012 testing
images and for KITTI 2015 testing images. Sections VI-C
and VI-D report the D1-All on the KITTI 2015 and SINTEL
training datasets. Section VI-E presents the D1-All for the
training data of KITTI 2012 and SINTEL.

A. Implementation Detail

Our model is trained on the datasets at half resolution
on random image crops of size of 192 × 32 pixels with
a batch size of 2. No other data augmentation is applied



KITTI 2012 KITTI 2015
Method Out-Noc (%) Out-All (%) D1-bg (%) D1-fg (%) D1-Noc (%) D1-All (%)

Hirschmuller et al. [19] 7.64 9.13 8.92 20.59 9.47 10.86
Hamzah et al. [17] - - 8.64 21.85 10.28 10.84

Ahmadi et al.[4] - - - - 11.17 16.55
Zhou et al. [48] - - - - 8.61 9.91
SegStereo [42] - - - - 7.70 8.79

OASM-Net [27] 6.39 8.60 6.89 19.42 7.39 8.98
PASMnet 192 [39] - - 5.41 16.36 6.69 7.23

Flow2Stereo [31] 4.58 5.11 5.01 14.62 6.29 6.61
Permutation Stereo 7.39 8.48 5.53 15.47 6.72 7.18

Table I
QUANTITATIVE RESULTS. COMPARISON OF PERMUTATION STEREO MATCHING WITH POPULAR UNSUPERVISED AND TRADITIONAL METHODS ON THE

KITTI 2012 AND KITTI 2015 TESTING DATASETS.

Figure 4. KITTI 2015 testing results. From top to bottom: Image 17,
Confidence map, Disparity map, Error image.

apart from random crops. The conv blocks are as defined in
[18] and their Fig. 5 (right) with f = 32. The convolution
layers apply fixed padding, have batch normalization and
have a Relu activation function. The implementation is made
with Mathematica[21] 12.3. The λ is set to 10 and the
symmetric normalization has t = 8 iterations. Networks are
trained until convergence with the Adam Optimizer[24] and
a learning rate of 1×10−3. The constant α is set to 0.85 as is
customary [7] and τ is set to 0.1. The models are trained on
an RTX3090. We like to highlight that comparisons will use
the state-of-the-art PASMnet [39] as they have made their
code available.

B. Evaluation

Quantitative results on the testing datasets KITTI 2012
and KITTI 2015 are shown in Tab. I. These results are
available online [1], [2]. Our neural network was pretrained
on SceneFlow and finetuned on KITTI 2012 and KITTI
2015 respectively. Tab. I indicates that our method does not
achieve state-of-the-art on the datasets for self-supervised

K2012 D1-All (%) SINTEL D1-All (%)
Stereo- Stereo- Stereo- Stereo-

Method C occluded visible occluded visible
PASMnet 192 - - 61.7 21.7

P-Stereo 44.07 7.34 64.90 20.09
P-Stereo ✓ 28.56 7.05 48.30 19.02

Table II
STEREO MATCHING ERROR FOR STEREO-OCCLUDED AND

STEREO-VISIBLE PIXELS FOR KITTI 2012 AND SINTEL TRAINING
DATASETS. P-STEREO IS PERMUTATION STEREO. C REPRESENTS THE

CONFIDENCE HEURISTIC APPLIED TO THE DISPARITIES.

stereo matching methods falling behind method Flow2Stereo
which optimizes multiple training objectives. With a
straightforward volumetric stereo backbone, our method
outperforms Semi-global matching from Hirschmuller et
al. [19] which is a gold standard in traditional stereo in
both KITTI 2012 and KITTI 2015 and outperforms, albeit
slightly, a method such as PASMnet [39]. The permutation
results unequivocally enforce stereo matching and yields
very high quality disparity maps. This level of performance
is further detailed in Fig 4 where one can see smooth
and sharp disparities without any smoothness or sharpness
losses. The qualitative results show streaking which is due to
our confidence heuristic. This very simple heuristic allows
our model to perform competitively, therefore the results can
interpreted as consequence of the permutation model not a
strong monocular completion heuristic.

C. Cost and Permutation Comparison

The introduction of the permutation volume formulation
to volumetric stereo methods is studied and comparisons
to cost volumes are presented in Tab. III. We argue that a
better representation of true stereo constraints in the network
architecture will lead to better performances in the D1-Noc
and D1-All error metrics for the various losses. Results
are provided for KITTI 2015 and SINTEL training datasets
while all networks are trained on FlyingThings3D. The
difference between cost volume and permutation volume
is better displayed in Fig. 5. Results demonstrate that
a permutation volume and with symmetric normalization



Volume for Normalization Losses KITTI 2015 SINTEL
normalization function LP LLRC Conf D1-Noc (%) D1-All (%) D1-Noc (%) D1-All (%) ∆

Cost Softmax ✓ 33.41 34.55 35.06 36.17 0.0
Permutation Symmetric ✓ 21.31 22.65 24.67 25.98 -11.1
Permutation Symmetric ✓ ✓ 36.15 37.03 25.23 26.37 -3.6

Cost Softmax ✓ ✓ 27.26 28.49 28.93 30.13 -6.1
Permutation Symmetric ✓ ✓ 15.77 17.21 18.36 19.78 -17.0
Permutation Symmetric ✓ ✓ ✓ 16.61 17.20 17.67 18.99 -17.2

Table III
COMPARATIVE EVALUATION OF STEREO MATCHING ERROR FOR COST VOLUME AND PERMUTATION VOLUME AND THEIR RESPECTIVE

NORMALIZATION. CONF REPRESENTS THE CONFIDENCE HEURISTIC APPLIED TO THE DISPARITIES. THE ERRORS ARE PRESENTED FOR THE KITTI
2015 AND SINTEL DATASETS.

Figure 5. Stereo matching error for image 46 of the KITTI 2015
training dataset. Top) Error image (31.1%) for a cost volume and softmax
normalization. Bottom) Error image (17.9%) for a permutation volume and
symmetric normalization.

Figure 6. Stereo-visibility. Top to bottom: Groundtruth disparity, Stereo-
visibility from groundtruth, Confidence map.

improve performances regardless of losses. Fig. 5 shows
the expected behaviour of the normalization which is
a row-wise consistency between matches where strong
matches propagate and naturally correct incompatibilities.
Tab. III shows that accurate confidence maps are tied
to orthogonality. In the absence of left-right consistency,
the confidence map yields very poor information and the
confidence heuristic may increase errors significantly.

D. Confidence Evaluation

Fig. 6 displays the binarized stereo visibility maps that
can be computed from the ground truth disparities (top)
and the binarized confidence map recovered from our
trained neural network (bottom). Using the computed stereo-

KITTI 2012 SINTEL
Model Conf D1-All (%) D1-All (%)

Permutation Stereo ✓ 8.70 21.09
PASMnet 6.32 20.32
PASMnet ✓ 6.15 19.62

PASMnet 192 5.74 23.17
PASMnet 192 ✓ 5.57 21.95

Table IV
GENERALIZATION RESULTS. EACH ROW REPRESENTS A DIFFERENT

TRAINING SET. CONF REPRESENTS THE CONFIDENCE HEURISTIC
APPLIED TO THE DISPARITIES. THE ERRORS ARE PRESENTED FOR THE

KITTI 2012 AND SINTEL TRAINING DATASETS.

visibility maps (middle), it is possible to separate pixels into
stereo-visible regions and stereo-occluded regions during
evaluation. Tab. II presents D1-ALL errors in the stereo-
occluded and stereo-visible regions. Our Permutation Stereo
method is trained on SceneFlow and finetuned on KITTI
2015 which is also the case for PASMnet 192. Fig. 7 shows
how the distributions of errors are affected by the confidence
heuristic. These results demonstrate that the recovered
confidence maps and the heuristic lower the error primarily
in the stereo-occluded regions. This indicates that the
confidence maps correctly model for occlusion and out-of-
image pixels and our simple heuristic has very limited effect
on stereo-visible pixels. Self-supervised stereo is naturally
unable to estimate disparities in occluded regions and this
is specifically what the permutation formulation addresses.
The photometric loss does not guide the network to yield
accurate disparity estimate in these regions during training.
However, the permutation formulation model accurately
recovers where this uncertainty lies. Tab. II shows that
PASMnet has poorer performance in stereo-occluded regions
than our simple heuristic.

E. Generalization

The permutation volume allows for new constraints on the
stereo matching problem and models for uncertainty through
the confidence map. This should lead to better generalization
performances. Tab. IV shows the performance in KITTI
2012 for models trained on SceneFlow and finetuned
on KITTI 2015. Our model has similar performance to



KITTI 2015 D1-All (%) Middleburry 2014 D1-All (%)
Volume for Normalization Stereo- Stereo- All Stereo- Stereo- All

normalization function Conf occluded visible occluded visible
Cost Softmax 54.2 15.0 17.3 77.4 28.6 35.0

Permutation Symmetric 56.5 15.6 17.7 81.3 27.3 34.2
Permutation Symmetric ✓ 30.1 14.8 15.6 47.1 29.8 32.1

Table V
GENERALIZATION RESULTS. MODEL TRAINED ON SCENEFLOW FLYINGTHINGS3D AND TESTED ON KITTI 2015 AND MIDDLEBURRY 2014

TRAINING DATA. THE PERMUTATION FORMULATION AND ITS CONFIDENCE MAP HELP IN A GENERALIZATION SETTING.
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Figure 7. Performance of confidence heuristic, KITTI 2015, Distribution of
D1-All (%). Left, impact on stereo-occluded pixels. Right, impact on stereo-
visible pixels. Blue, before the confidence heuristic. Orange, after applying
the confidence heuristic. We observe a reduction of error for stereo-occluded
pixels and no impact on stereo-visible pixels as expected.

PASMnet 192 in Tab. I yet outperforms its results in
an out-of-domain dataset such as SINTEL. Although it
is unorthodox, we apply the confidence heuristic to the
recovered disparity maps obtained from the PASMnet
networks. This leads to consistent improvements in the
results. For the KITTI 2012 results, PASMnet outperforms
our model yet the confidence heuristic still improves its
results. This demonstrates that the recovered confidence map
is a good measure of uncertainty in stereo matching.

Tab. V presents the generalization improvement that
results from the introduction of the permutation model.
All models are trained on SceneFlow and are used to
generalize to KITTI 2015 and Middleburry 2014 [36].
The introduction of the permutation volume by itself does
not automatically improve results. Rather, the use of the
uncertainty information contained in the confidence map
allows for gains with even the simplest heuristic.

VII. LIMITATIONS

The permutation volume adds strong constraints to the
stereo matching process. However, it does not directly help
with monocular disparity estimation. The current paper did
not explore how to best manage the stereo-occluded regions
nor did it explore the use of a dedicated monocular disparity
network for these regions. These monocular networks could
be learned in an unsupervised manner [10], [29], [8],
[44]. This paper presents the permutation model and its
confidence map as a tool to identify matching uncertainty
and allow for comparable results on popular datasets. Using
the most naive occlusion handling approach makes it easier
to highlight the usefulness of the confidence maps recovered

from the permutation volume.
This paper explores the use of a permutation volume only

for the self-supervised learning setting. As it has been stated,
a goal was to establish a confidence measure during the
stereo matching process. The self-supervised setting where
models naturally cannot solve for occlusion and out-of-
image pixels is the best setting for the evaluation of such
a model. It would be interesting to study the effects of the
permutation model in a supervised learning context, and its
impact on explainability.

VIII. CONCLUSION

This paper proposed a novel permutation formulation
to the stereo matching problem. The permutation volume
allows for a more natural representation of constraints
that were previously managed mostly through losses, such
as smoothness, sharpness, and occlusions. Relying on
symmetric normalization, it also provides a confidence
measure which is closely related to the concept of
stereo-visibility. Validation is accomplished with stereo
performances measured on standard testing datasets, while
the usefulness of confidence map is assessed with stereo-
visibility. Backed by experimental results, the proposed
confidence heuristic adequately resolved stereo-occluded
pixels, which are considered monocular. We consider that
the permutation volume formulation is a good addition
to stereo matching algorithms that not only helps satisfy
stereo constraints but also provides explainability, which
is becoming important in practical applications of stereo
algorithms.



REFERENCES

[1] http://www.cvlibs.net/datasets/kitti/eval stereo flow
detail.php?benchmark=stereo&error=3&eval=all&result=
c3e639d5ab83f9018bd6e92ac553b33ea7edcdb0.

[2] http://www.cvlibs.net/datasets/kitti/eval scene
flow detail.php?benchmark=stereo&result=
78dc427d034c849ebb9794ebb3fa8d5b204b8238.

[3] Ryan Prescott Adams and Richard S Zemel. Ranking via
sinkhorn propagation. arXiv preprint arXiv:1106.1925, 2011.

[4] Aria Ahmadi and Ioannis Patras. Unsupervised convolutional
neural networks for motion estimation. In 2016 IEEE
international conference on image processing (ICIP), pages
1629–1633. IEEE, 2016.

[5] Stan Birchfield and Carlo Tomasi. Depth discontinuities
by pixel-to-pixel stereo. International Journal of Computer
Vision, 35(3):269–293, 1999.

[6] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In A. Fitzgibbon et al. (Eds.), editor, European Conf. on
Computer Vision (ECCV), Part IV, LNCS 7577, pages 611–
625. Springer-Verlag, Oct. 2012.

[7] Yuhua Chen, Cordelia Schmid, and Cristian Sminchisescu.
Self-supervised learning with geometric constraints in
monocular video: Connecting flow, depth, and camera. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7063–7072, 2019.

[8] Zhi Chen, Xiaoqing Ye, Wei Yang, Zhenbo Xu, Xiao Tan,
Zhikang Zou, Errui Ding, Xinming Zhang, and Liusheng
Huang. Revealing the reciprocal relations between self-
supervised stereo and monocular depth estimation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15529–15538, 2021.

[9] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao
Dai, Xiaojun Chang, Hongdong Li, Tom Drummond, and
Zongyuan Ge. Hierarchical neural architecture search for
deep stereo matching. Advances in Neural Information
Processing Systems, 33, 2020.

[10] Jaehoon Cho, Dongbo Min, Youngjung Kim, and Kwanghoon
Sohn. Deep monocular depth estimation leveraging a
large-scale outdoor stereo dataset. Expert Systems with
Applications, 178:114877, 2021.

[11] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or
epistemic? does it matter? Structural safety, 31(2):105–112,
2009.

[12] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser,
Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt,
Daniel Cremers, and Thomas Brox. Flownet: Learning optical
flow with convolutional networks. In Proceedings of the IEEE
international conference on computer vision, pages 2758–
2766, 2015.

[13] Patrick Emami and Sanjay Ranka. Learning permutations
with sinkhorn policy gradient. arXiv preprint
arXiv:1805.07010, 2018.

[14] John Flynn, Ivan Neulander, James Philbin, and Noah
Snavely. Deepstereo: Learning to predict new views from the
world’s imagery. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5515–5524,
2016.

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[16] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow.
Unsupervised monocular depth estimation with left-right
consistency. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 270–279,
2017.

[17] Rostam Affendi Hamzah, Haidi Ibrahim, and Anwar
Hasni Abu Hassan. Stereo matching algorithm based on per
pixel difference adjustment, iterative guided filter and graph
segmentation. Journal of Visual Communication and Image
Representation, 42:145–160, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[19] Heiko Hirschmuller. Stereo processing by semiglobal
matching and mutual information. IEEE Transactions on
pattern analysis and machine intelligence, 30(2):328–341,
2007.

[20] Baoru Huang, Jian-Qing Zheng, Stamatia Giannarou, and
Daniel S Elson. H-net: Unsupervised attention-based stereo
depth estimation leveraging epipolar geometry. arXiv preprint
arXiv:2104.11288, 2021.

[21] Wolfram Research, Inc. Mathematica, Version 12.2.3.
Champaign, IL, 2021.

[22] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Advances in
neural information processing systems, 30, 2017.

[23] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep
stereo regression. In Proceedings of the IEEE International
Conference on Computer Vision, pages 66–75, 2017.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[25] Andreas Klaus, Mario Sormann, and Konrad Karner.
Segment-based stereo matching using belief propagation and
a self-adapting dissimilarity measure. In 18th International
Conference on Pattern Recognition (ICPR’06), volume 3,
pages 15–18. IEEE, 2006.

[26] Hamid Laga, Laurent Valentin Jospin, Farid Boussaid, and
Mohammed Bennamoun. A survey on deep learning
techniques for stereo-based depth estimation. arXiv preprint
arXiv:2006.02535, 2020.

[27] Ang Li and Zejian Yuan. Occlusion aware stereo matching
via cooperative unsupervised learning. In Asian Conference
on Computer Vision, pages 197–213. Springer, 2018.

[28] Ang Li, Zejian Yuan, Yonggen Ling, Wanchao Chi, Shenghao
Zhang, and Chong Zhang. Unsupervised occlusion-aware
stereo matching with directed disparity smoothing. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[29] Huan Liu, Junsong Yuan, Chen Wang, and Jun Chen. Pseudo
supervised monocular depth estimation with teacher-student
network. arXiv preprint arXiv:2110.11545, 2021.

[30] Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao
Wang, Ying Tai, Donghao Luo, Chengjie Wang, Jilin
Li, and Feiyue Huang. Learning by analogy: Reliable
supervision from transformations for unsupervised optical
flow estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6489–
6498, 2020.

[31] Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu.
Flow2stereo: Effective self-supervised learning of optical flow
and stereo matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6648–6657, 2020.

[32] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of the

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=c3e639d5ab83f9018bd6e92ac553b33ea7edcdb0
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=c3e639d5ab83f9018bd6e92ac553b33ea7edcdb0
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=c3e639d5ab83f9018bd6e92ac553b33ea7edcdb0
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=78dc427d034c849ebb9794ebb3fa8d5b204b8238
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=78dc427d034c849ebb9794ebb3fa8d5b204b8238
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=78dc427d034c849ebb9794ebb3fa8d5b204b8238


IEEE conference on computer vision and pattern recognition,
pages 4040–4048, 2016.

[33] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint
3d estimation of vehicles and scene flow. In ISPRS Workshop
on Image Sequence Analysis (ISA), 2015.

[34] Moritz Menze, Christian Heipke, and Andreas Geiger. Object
scene flow. ISPRS Journal of Photogrammetry and Remote
Sensing (JPRS), 2018.

[35] Liang Peng, Dan Deng, and Deng Cai. Geometry-
based occlusion-aware unsupervised stereo matching for
autonomous driving. arXiv preprint arXiv:2010.10700, 2020.

[36] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg
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