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Calibration of Cameras with Radially
Symmetric Distortion

Jean-Philippe Tardif, Peter Sturm, Martin Trudeau, and Sébastien Roy

Abstract— We present algorithms for plane-based calibration
of general radially distorted cameras. By this we understand
cameras that have a distortion center and an optical axis such
that the projection rays of pixels lying on a circle centeredon
the distortion center, form a right viewing cone centered onthe
optical axis. The camera is said to have a single viewpoint (SVP)
if all such viewing cones have the same apex (the optical center),
otherwise we speak of NSVP cases. This model encompasses the
classical radial distortion model [5], fisheyes and most central or
non-central catadioptric cameras.

Calibration consists in the estimation of the distortion center,
the opening angles of all viewing cones and their optical centers.
We present two approaches of computing a full calibration
from dense correspondences of a single or multiple planes with
known Euclidean structure. The first one is based on a geometric
constraint linking viewing cones and their intersections with the
calibration plane (conic sections). The second approach isan
homography-based method. Experiments using simulated anda
broad variety of real cameras show great stability. Furthermore,
we provide a comparison with Hartley-Kang’s algorithm [12],
which however can not handle such a broad variety of camera
configurations, showing similar performance.

Index Terms— Calibration, omnidirectional vision, fisheye,
catadioptric camera.

I. I NTRODUCTION

I N the last few years, we have seen an increasing interest
in non-conventional cameras and projection models, going

beyond affine or perspective projection. There exists a large
diversity of camera models, many of which specific to certain
types of projections [14], [17], others applicable to families of
cameras such as central catadioptric systems [2], [3], [7],[9].
All these models are described by a few intrinsic parameters,
much like the classical pinhole model, possibly enhanced
with radial or decentering distortion coefficients. Calibration
methods exist for all these models, and they are usually tailor-
made for them,i.e. can not be used for any other projection
model [15]. Several works address the calibration problem
from an opposite point of view, by adopting a very generic
imaging model that incorporates most commonly used cameras
[6], [10], [11], [20], [22].

In the most general case, cameras are modeled by attributing
an individual projection ray to each pixel. Such a model is
highly expressive, but it is difficult to obtain a stable calibra-
tion of cameras with it, at least with few input images taken
in an uncontrolled environment. Finally, several researchers
have proposed a compromise between parametric and such
generic models. They assume radial symmetry around the
distortion center (often considered as coinciding with the
principal point), but with a general distortion function [12],
[24]–[26], [28], [29].
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Fig. 1. Our camera model in the case of a non-central projection (see text
for explanations). The inlayed illustrations show the distortion center (in blue)
and four distortion circles and their corresponding viewing cone and optical
center.

In this paper, we use a model of this category which we find
sufficiently general to model many common types of cameras.
By having fewer parameters than the fully generic model,
calibration remains easy and stable. It encompasses many
common camera models, such as pinhole (modulo aspect ratio
and skew), the classical polynomial radial distortion model,
fisheyes, or any catadioptric system whose mirror is a surface
of revolution, and for which the optical axis of the perspective
(or affine) camera looking at it is aligned with the mirror’s
revolution axis. We describe our model in the following and
refer to Fig. 1 for an illustration. Cameras are modeled using
the notion of adistortion center in the image whose back-
projection yields theoptical axis in 3D. For cameras with
radially symmetric distortion , the projection rays associated
with pixels lying on a samedistortion circle centered on the
distortion center, lie on a rightviewing conecentered on the
optical axis. In the following, we denote byd the radius of
a distortion circle; for ease of expression, we also speak of
distortion circled, meaning the distortion circle of radiusd.

For a perspective camera with focal lengthf , the open-
ing angle of a distortion circle’s viewing cone, is given by
2 arctan d

f . Hence, the opening angles of all viewing cones are
“dictated” by the camera’s focal length. In our model, this is
generalized: in the most general case, one may not assume any
relation between opening angles of different viewing cones.
In other words, we may have one individual focal lengthfd

per distortion circled. We may define afocal length function
fd = f(d). In practice, we handle such a general model in two
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different ways: by assuming a polynomial form for the focal
length function, or by subsampling it and estimating/using
one focal length per discrete sample ofd. We also consider
its reciprocal, thedistortion function that maps the opening
angle of a viewing cone to the radius of the associated
distortion circle.

Let us introduce a few additional notations. A line spanned
by a pixel and the distortion center is called aradial line and
the plane spanned by the projection ray associated with the
pixel and the optical axis, aradial plane. In our camera model,
we specify that angles between radial lines and associated
radial planes are identical (otherwise, it would be a very
uncommon camera). Our model comprisescentral cameras
(SVP), where all viewing cones have the same apex (the
optical center), but alsonon-central ones (NSVP), for which
the viewing cones’ apexes lie anywhere on the optical axis. In
the latter case, we may speak of one optical center per viewing
cone. For convenience, these terms are summarized in Table I.
Problem statement. We want to calibrate cameras based on
the above model from one or several images of a calibration
plane in unknown positions. Calibration consists in estimating
the camera’s focal length function or, equivalently, its distor-
tion function. Further, for the NSVP case, we have to estimate
the optical centers associated with all distortion circles.

The problem of calibration from a planar scene of known
geometry has been studied intensively in computer vision. It
is widely accepted that one seeks a solution that minimizes
the sum of reprojection errors of the points on the calibration
planes. This being a non-convex function, iterative methods
must be used. Besides the problem of convergence to a
local minimum, they require some estimate for the internal
parameters of the camera, generally provided by the camera
manufacturer [1], [13]. Both these difficulties can be over-
come by non-iterative approaches relying on algebraic error
functions as long as they provide good accuracy. Then, these
results can be refined iteratively using a geometric error.
Contributions. Our contributions take the form of two non-
iterative calibration algorithms. Their input is the Euclidean
structure of the plane(s) and a dense or sparse matching
between the plane(s) and the camera image. The first approach
is based on algebraic constraints relating the projection of the
points on the calibration plane on the image. It is based on
the observation that each distortion circle and the associated
viewing cone can be considered as an individual perspective
camera. Hence, the projection of a calibration plane to the
image, when reduced to a single distortion circle, can be
expressed by an homography and we can readily apply plane-
based calibration algorithms designed for perspective cameras.
Our second approach is based on a detailed geometric analysis.
Consider one image of a calibration plane; each viewing cone
of the camera intersects the calibration plane in a conic, which
we call calibration conic. We describe geometric constraints
relating calibration conics to the orientation and position of
the camera as well as its intrinsic parameters; these are
at the basis of our second calibration approach. Our first
approach usually performs best in practice. Furthermore, it
can accurately estimate the projection model for a non-central
camera. Based on our experimental results, we argue that in

the case of a general model such as the one we propose,
an approach directly estimating a non-central projection gives
better accuracy than an approach based on: 1) estimating an
approximated central projection, 2) iterative refinement using
a non-central model [15].
Organization. A geometric study of our model is presented
in Section II. Our first calibration approach, akin to plane-
based calibration of perspective cameras, is described in
Section III followed by our second, more geometric, approach
in Section IV. Our algorithms assume a known position of
the distortion center, but we also show how to estimate
it, using repeated calibrations for different candidates,cf.
Section V. Several practical issues and experimental results,
including a comparison with Hartley-Kang’s methods [12], are
presented in Section VI and Section VII, respectively. Finally,
we conclude in Section VIII.

II. GEOMETRY

In this section, we present geometric constraints for
our camera model. Readers interested in implementing the
homography-based approach may wish to skip to Sections II-C
and III.

A. One Distortion Circle in One Image of a Calibration Plane

Let us consider one distortion circle in the image plane.
Its associated viewing cone cuts the calibration plane in a
calibration conic. From dense matches between image and
calibration plane, we can compute this calibration conic (see
Section VI for more on the dense matching). This conic can
be either an ellipse or a hyperbola (the parabola is only a
theoretically interesting case). If we knew the position ofthe
camera’s optical center relative to the calibration plane,then
we could directly compute the viewing cone of our distortion
circle, i.e. the cone that has the optical center as apex and
that contains the above calibration conic. As mentioned, that
cone has several useful properties: its axis is the camera’s
optical axis and it is a right cone,i.e. rotationally symmetric
with respect to its axis. From the cone, the focal length of the
considered distortion circle can be easily computed: the cone’s
opening angle equals the field of view.

In practice, we do not know the optical center’s position
relative to the calibration plane. In the following, we show
geometrical relations between the calibration conic, the optical
center and the optical axis of the camera, that allow to compute
the optical center. Recall that when talking about optical
center, we mean the optical center per distortion circle; they all
lie on the optical axis and in the SVP case, they are identical.

Without loss of generality, we assume that the calibration
plane is the planeZ = 0, and that the calibration conicε is
given by the matrixε ∝ diag(a, b,−1) with |b| ≥ a > 0 (∝
represents equality up to scale),i.e. the X-axis is the conic’s
major axis. The type of the calibration conicε depends ona
andb as follows:

{

b ≥ a > 0 ellipse

b < 0 and |b| > a > 0 hyperbola.
(1)
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TABLE I

SUMMARY OF THE TERMS RELATED TO OUR CAMERA MODEL.

Terms Description
Optical axis A line perpendicular to the image plane
Distortion center The intersection between the image plane and the optical axis
Distortion circle A circle in the image centered in the distortion center
Viewing cone Back-projection of a distortion circle; a right cone centered in the optical axis
Calibration conic Intersection of a viewing cone and a calibration plane
Radial line A line passing through the distortion center
Radial plane Back-projection of a radial line
Central projection All viewing cones have identical apex, the optical center
Non-central projection The viewing cones only share the same (optical) axis
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Fig. 2. Illustrations of the geometry of viewing cones, calibration conics (here ellipses) and location of optical center in the SVP case.(a) Complete
illustration for one viewing cone.(b) View of the calibration plane, showing many cones’ calibration ellipses. Note that their major axes are collinear.(c)
Side view of the viewpoint conics (hyperbolas in this case) associated with many calibration conics.

Our aim is to provide constraints on the position of the optical
center, as well as on the orientation of the optical axis, from
this conic. We first do this for the case of a calibration ellipse,
then for the case of a hyperbola.
The case of calibration ellipses. Let us first state a well-
known result. Consider a right cone whose apex is a point
with real coordinates, and its intersection with a plane. For
now, we assume that the intersection is an ellipse (the case of
the hyperbola will be discussed later). It is easy to prove that
the orthogonal projection of the cone’s apex onto the plane,
lies on the ellipse’s major axis (cf. Fig. 2(a)). This implies
that the cone’s apex lies in the plane that is orthogonal to the
ellipse’s supporting plane and that contains its major axis.

For our problem, this means that the optical center must lie
in the planeY = 0 (since the ellipse lies in planeZ = 0 and
has theX-axis as major axis). We may further constrain its
positionC = (X, 0, Z, 1)

T, as follows [4]. The cone withC
as apex and that contains the calibration ellipseε, is given by

Λ ∝







a Z2 0 −a X Z 0
0 b Z2 0 0

−a X Z 0 a X2 − 1 Z
0 0 Z −Z2







.

For this cone to be a right one, its upper left3 × 3 matrix Λ̄
must have a double eigenvalue. The three eigenvalues are:

b Z2 ,
a (X2+Z2) − 1 ±

√

4a Z2 + (1−a (X2+Z2))
2

2
. (2)

The second and third eigenvalues can not be equal for real
values ofX and Z (besides in the trivial caseX = Z = 0
which is excluded since it would correspond to the optical
center lying in the calibration plane). The first eigenvalueis
equal to the third one ifZ = 0 (excluded for the same reason

as above) and to the second one if:

a b X2 + b(a − b)Z2 + (a − b) = 0. (3)

This equation tells us that the optical center lies on aview-
point conic given by the following matrix and the associated
equation

Ψ ∝





a b
b(a − b)

a − b



 ,
(
X Z 1

)
Ψ





X
Z
1



 = 0.

(4)
This is a hyperbola, due tob ≥ a > 0 (cf. (1)); it is
sketched in Fig. 2(a). Furthermore, its asymptotes correspond
to the directions of the two circular cylinders that containthe
calibration ellipse.

Let us now consider the orientation of the optical axis. Due
to (3), we have an optical center given by:

Z = ±
√

a b X2 + a − b

b(b − a)
. (5)

Here, we exclude the casea = b, which would correspond to
the camera looking straight at the calibration plane.

The direction of the cone’s axis is given by the eigenvector
associated with the single eigenvalue ofΛ̄, i.e. the third one,
augmented with a homogeneous coordinate0:

(

±
√

b(b − a)(a b X2 + a − b) 0 a b X 0
)T

. (6)

We now show that the cone’s axis is identical to the tangent
of the hyperbolaΨ in the optical centerC, which is given by
the line (in the planeY = 0)

Ψ





X
Z
1



 =





a b X

∓
√

b(b − a)(a b X2 + a − b)
a − b



 .
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Fig. 3. Viewing cones can also be seen as individual perspective cameras
with different focal length. A rectified image can be obtained by projecting
the distortion circles (which lie in different planes) on one planeΠfront (or
Πback for a field of view larger than180o).

Its point at infinity is (still in the planeY = 0)
(

±
√

b(b − a)(a b X2 + a − b) a b X 0
)T

,

i.e. it is identical with the point given in (6). Hence, for an
optical center onΨ, the optical axis is directly given by the
associated tangent.

Coming back to (2), the eigenvalues of the cone can be used
to compute the focal lengthfd associated to a distortion circle
of radiusd (see Fig. 3). The valuefd/d is the tangent of half
the opening angle of the viewing cone. Furthermore, it can
be shown that(fd/d)2 equals the negative of the ratio of the
double and the single eigenvalue ofΛ̄, i.e. the negative of the
ratio of the first and the third eigenvalues given in (2). Using
(5), we get

(
fd

d

)2

= −b
(
abX2 + a − b

)

a(a − b)
. (7)

This relation will prove useful in Section IV-B.
The case of calibration hyperbolas. The case where the
intersection between a cone and the calibration plane yields
a hyperbola is accounted for automatically by the previous
formulation. All above findings hold here, with the exception
that the viewpoint conicΨ is an ellipse. This case typically
occurs with very wide angle cameras or when the angle
between the camera’s optical axis and the calibration plane
is large.

B. Multiple Distortion Circles

So far, we have shown that for an individual distortion
circle, the associated viewing cone can be determined from
the associated calibration conic, up to 1 degree of freedom
(location on the viewpoint conicΨ and associated orientation
of the optical axis). We now show how to get a unique solution,
when considering several distortion circles simultaneously. Let
us first note that calibration conics corresponding to different
distortion circles are not independent: their major axes are
collinear (cf. Fig. 2(b)), even in the NSVP case. Their centers
are not identical however, unless they are all circles, which can

only happen when the camera looks straight at the calibration
plane.

Let Ψd be the viewpoint conic associated with distortion
circle (of radius)d, all Ψd being given in the same coordinate
frame. In the case of a single viewpoint camera, the optical
center must lie on all these conics. Furthermore, the optical
axis is tangent to all of them. This implies that all conics
touch each other (have a double intersection point) in the
optical center. This is illustrated in Fig. 2(c). A naı̈ve algorithm
would compute the viewpoint conic for all calibration conics
and seek their single intersection/contact point. However, very
little noise can cause two viewpoint conics to have no real
intersection point at all, instead of a double one.

Interestingly, this constraint gives a geometric explanation
of the ambiguity, or correlation, between camera position and
focal length that often occurs when calibrating a camera from
a single view. Consider perfectly recovered viewpoint conics
(such as in Fig. 2 (c)), the ambiguity is observed as the area
where the viewpoint conics are “very close” to each other.
Clearly, a very low perturbation of the curves can result in
significant but correlated errors on the optical center and the
focal length.

In the NSVP case, a separate optical center corresponds to
each distortion circle and viewing cone. Hence, the viewpoint
conics will not have a single contact point anymore. However,
the optical axis is shared by all viewing cones. Hence, it is the
single (in general) line that is tangent to all viewpoint conics.
Furthermore, each contact point with the optical axis is the
associated optical center.

C. Model parameterization

It is possible to consider the distortion circles and associ-
ated viewing cones as individualperspective cameras, with
different focal lengths but identical principal points [24]–[26].
In the SVP case, extrinsic parameters of all these cameras are
identical, whereas in the NSVP case, they all share the same
orientation and the optical centers are merely displaced along
the optical axis.

Let us consider the distortion circle of radiusd and one
image of a calibration plane. From point correspondences
between pixels on this circle and points on the calibration
plane (on the calibration conic), we can compute a plane-
to-image homographyHd. For simplicity, let us assume that
image coordinates have been translated to put the distortion
center at the origin. The homography can then be decomposed
such that





u
v
1



 ∝ Hd





x
y
1



 = Kd R





1 0
0 1 −t + tdr3

0 0









x
y
1



 , (8)

where∝ means equality up to scale,(x, y) is a calibration
point, (u, v) a pixel on the distortion circle, andR and t, a
rotation matrix and translation vector representing camera pose
(same for alld). The scalartd allows to model translational
displacement of individual viewing cones along the optical
axis (given byrT

3 , the third row ofR), which is needed for
NSVP cameras. For SVP cameras,td is set to 0 for alld.
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As for Kd, it is a calibration matrix1 diag(fd, fd, 1), where
fd is the focal length associated with the considered distortion
circle. We may interpret the relation betweend and fd as
a distortion function applied to a perspective camera whose
undistorted image plane isπfront (cf. Fig. 3).

Note that this parameterization only accounts for viewing
cones with field of view smaller than180o. Larger fields of
view can be modeled by adding a reflection to the rotational
component of the pose,R′ = diag(1, 1,−1)R, and a corre-
sponding image planeπback. Equivalently, one may describe
these cones as cameras with negative focal length as presented
in [25].

D. Overview of the approaches

We briefly describe our two calibration approaches in terms
of the concepts previously introduced in this section. Both
proceed in two steps. In the homography based algorithm
(next section), the optical axis for each view of the calibration
plane is first estimated, each one up to four possibilities. The
correct choice is made at the second step, which consists of
simultaneously estimating the position of the camera on the
optical axis for all views and the opening angle (equivalently
the focal length) of all the cones. The second approach is based
on above introduced geometric constraints, although ultimately
some algebraic manipulations are required to avoid an iterative
solution. We discuss two solutions for estimating the pose of
the camera for each view, using the calibration conics. Then,
the opening angles of the cones are estimated by re-fitting the
calibration conics using a parameterization enforcing thefit to
be consistent with the pose of the camera.

III. H OMOGRAPHY-BASED CALIBRATION

A. Unconstrained approach

In [24], an approach based on recovering theImage of the
Absolute Conic, associated to each distortion circle, from one
or many images of a calibration plane, is introduced. Once
the internal parameters are recovered, the camera external
parameters are estimated using the approach presented in [19],
[21], [31]. The weakness of this approach is that since the
calibration is individually performed on each distortion circle,
it does not enforce SVP or NSVP constraints. However, it
is useful for estimating the distortion center as describedin
Section V. This algorithm will be referred to “IAC”.

B. Constrained approach

We present another homography-based approach that can
enforce the constraints directly. It is related to Hartley-Kang’s
approach, but it also handles non-central omnidirectionalcam-
eras.

1As mentioned in the introduction, this model does not include a skew
between pixel axes or an aspect ratio different from1. Also, it assumes that
the distortion center is at the principal point.

SVP case, one image.In the SVP case,td is zero for alld.
It follows that

K
−1

d q ∝





1
1

fd



q ∝ R





1 0
0 1 −t

0 0





︸ ︷︷ ︸

M

Q (9)

holds up to scale. If we divide the first by the second
coordinates of both sides, we obtain an equation which is
independent from the distortion circled

q1

q2
=

(MQ)1
(MQ)2

. (10)

We finally obtain a linear equation on the six coefficients in
the first two rows of the pose matrixM

q1 (M21Q1 + M22Q2 + M23Q3)−
q2 (M11Q1 + M12Q2 + M13Q3) = 0. (11)

The above equation being linear homogeneous, we may use all
point correspondences between the calibration plane and the
image to estimate the first two rows ofM, up to scale. Until
here, our algorithm is very similar to [12], but the following
differs significantly. The pose,i.e. R and t, can be partially
estimated fromM. There exists a scalarλ such that

[
R11 R12 −rT

1 t

R21 R22 −rT
2 t

]

= λM̄, (12)

whererT

i is the ith row of R andM̄ the upper2 × 3 part of
M. This leads to the following observations:

• the rotation matrixR can be estimated up to 4 solu-
tions, from the left2 × 2 part of M̄. They differ by a
choice of sign for columns and rows of the solution:
if R is one correct solution, then the other three are
given by DR, RD, DRD, with D = diag(−1,−1, 1).
Distinguishing the valid rotation matrix will be done later
when estimating the full camera position and internal
parameters;

• the intersectiont0 between the optical axis of the camera
and the calibration plane can be recovered as the right
nullspace ofM̄, since it is the point on the plane pro-
jecting onto the distortion center (the origin). Hence, the
translation vectort can be estimated up to one degree of
freedom, a displacementµ along the optical axis

t = t0 + µr3. (13)

Estimatingµ can be done simultaneously with estimating the
focal lengths of all distortion circles. By inserting the solution
for t into (9), we obtain

q ∝





fd

fd

1



R





1 0
0 1 −t0 − µr3

0 0



Q.

Due to the orthonormality ofR, we get

q ∝





fd

fd

1







R





1 0
0 1 −t0

0 0





︸ ︷︷ ︸

T0

−





0
0

µ







Q
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Let us denote:S = RT0Q which is a known vector. We thus
can write the above equation as

q ∝





fdS1

fdS2

S3 − µQ3



 =





S1

S2

Q3









fd

fd

S3/Q3 − µ



 (14a)

and obtain the following set of linear equations on the

unknownsfd andµ

[q]×





S1

S2

−Q3









fd

fd

µ − S3/Q3



 = 0 (14b)

or




q3S2 q2Q3

q3S1 q1Q3

q1S2 − q2S1 0





(
fd

µ

)

=





q2S3

q1S3

0



 . (14c)

Note that the equation system is non-homogeneous,i.e. the
solution for thefd and µ is computed exactly, not only up
to scale. Also note that the third equation is useless: in the
absence of noise, the termq1S2 − q2S1 is zero and gives no
constraint onfd. With noise however, the third equation admits
random coefficients and using it was found to biasfd towards
small values. We thus only use the first two equations of (14c).

All point correspondences, from all distortion circles, can
be used simultaneously: each correspondence contributes to
estimatingµ and to the focal length of the distortion circle
it belongs to. Hence, overall we have a linear system of size
2n×(D+1), wheren is the number of point correspondences
andD the number of distortion circles.

This assumed a known rotation. All rotation matrices among
the four possibilities shown above, give the same solution for
fd andµ, up to different signs. Letd0 be distortion circle of
smallest radius. Then the correction rotation is the one with
positivefd0

andµ.
Using many images of a calibration plane. The above
equations can be used in a slightly modified form to simulta-
neously use many images. Letv be the index for each view
out of V . Each associated2 × 3 partial homographȳMv can
be computed using (11). Thentv0 and Rv can be estimated
individually from each of them. Finally, (14c) is extended
naturally to account for many views by simultaneously solving
for all displacementsµv and focal lengthsfd. The resulting
equation system is of size2n × (D + V ).
NSVP case, many views. In the NSVP case, the previous
algorithm can be applied nearly without modification. Let us
consider the form of the plane-to-image homography for an
individual distortion circle, given in equation (8), for the NSVP
case. In comparison to the SVP case (equation (9)), there is
an additional termtd for the position of the displaced optical
center on the optical axis:

q ∝ HvdQ = Kd Rv





1 0
0 1 −(tv0 + (µv + td)rv3)
0 0



Q

= Kd (RvTv0 − diag(0, 0, µv + td))Q. (15)

Note thattd is the same for all views. SinceKd is a diagonal
matrix, the first two coordinates of the right hand side do not
depend onµv andtd. Hence, like in the SVP case, (11) can be

INPUT: Dense or Sparse plane–image correspondences

ALGORITHM:
For each calibration planev:

• EstimateM̄v using (11) and all the correspondences.
• Obtain the rotationRv up to 4 solutions using (12).
• Obtaint0v as the right nullspace of̄Mv,

The four possible optical axes are given by (13).
• DisambiguateRv and optical axis by estimating∀d :

fd andµv using (14c)

DENSE CORRESPONDENCES:
• Simultaneously estimate∀d : fd and∀v : µv combin-

ing (14c) for each view.

SPARSE CORRESPONDENCES:
• Apply the previous step replacingfd by a polynomial.

Perform iterative refinement of the reprojection error.

Fig. 4. Complete algorithm for theHB calibration approach for an SVP
camera.

used to estimate linearly the first two rows of the pose matrix
Mv, using all point correspondences, for all distortion circles.
The pose parametersRv and tv can also be extracted in the
same manner, withtv being obtained up to a displacement
along the optical axisrv3.

We now consider how to estimate the focal lengthsfd and
the optical center positionsµv+td. The equations are identical
to those in the SVP case, with the difference thatµv has to
be replaced byµv + td, i.e. is not the same for all distortion
circles. The set ofµv andtd is an overparameterization, since
subtracting a value from allµv and adding it to alltd leaves
(15) unchanged. Hence, we may set one of them to any fixed
value. The equation system is thus of size2n× (2D−1+V ).
Polynomial model. Calibrating a general model requires
many data points to obtain precise and accurate results, i.e.
to avoid over-fitting. Otherwise, relying on a more restricted
model may give better results. In [25], [26], [29], a polynomial
model was used to represent the relationship between focal
length and radiusd. Our formulation can also be trivially
modified to use polynomials forfd as well astd. For NSVP
cameras, it turns out that in practice, estimating the fully
general model can be unstable because of the focal length–
displacement ambiguity mentioned in Section II-B. The result
is that bothfd and td are not smooth functions for small
radius valuesd. Instead of relying on smoothing terms (whose
weights are difficult to set) to circumvents this, we prefer using
polynomials.

The above method is summarized in Fig. 4 and referred to
as “HB” in the following. In practice, this is the most accurate
and flexible of the approaches presented here (see Section VII).

IV. GEOMETRIC APPROACH

A. Solving the Calibration and the Pose

In the following, we present a second approach based on the
geometric constraints discussed in Section II. We first propose
a naı̈ve calibration approach; it is not optimal though and a
better one will be discussed in the next section. Recall the
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constraints relating calibration conics, viewpoint conics and
position of the camera illustrated in Fig. 2. In the SVP case,
one easily deduces a calibration algorithm consisting in first
estimating the optical center (relative to the calibrationplane)
as the 3D point which is closest on average to all viewpoint
conics (see below). Then, (7) can be used to compute the
focal lengths for all distortion circles. In the NSVP case, a
possibility would be to compute the optical axis: the lineL

that minimizes the sum of squared distances to the viewpoint
conics. However, this is not very accurate as discussed below.
SVP case: Computing the closest point to the viewpoint
conics. This is the original approach presented in [24].
Computing the orthogonal distance of a point to a general
conic requires solving a fourth degree polynomial [30]. Using
this to compute the closest point to our set of viewpoint conics
is not very practical. Instead, we iteratively minimize a cost
function subject to constraints. The closest pointq is found
by solving

min
q,qd

∑

d

dist(q,qd)
2, subject toqT

d Ψd qd = 0,

i.e. we also estimate one point per conicΨd that will, after
convergence, be the orthogonal projection ofq on Ψd. Since
the function and constraints are polynomial, this problem
can be optimized using an algorithm relying on Cylindrical
Algebraic Decomposition (CAD) which guarantees a global
minimum [18]. Such an algorithm is available through the
Minimize function of Mathematica. In this work, we present
another solution that gives much better result. Instead of
proceeding into two steps, we directly use the fitted calibration
conics to estimate the camera position, as described below.

B. A formulation enforcing the constraints directly

In our first experiments, we found the previous approach
to be unstable, even though good results could be obtained in
some cases [24]. This is because the formulation has several
drawbacks. First, although CAD optimization is algorithmic,
it becomes computationally intractable when the number of
viewpoint conics increases. Secondly, it appears that finding
the closest point to the set of the recovered viewpoint conics
is not the optimal criterion. As discussed above and shown in
Fig. 5, when the noise is large, the shape and position of the
viewpoint conics may become very perturbed.

For an SVP camera, a better formulation would directly
enforce that the viewpoint conics all touch in one location and
have the same tangent at this point. Then, CAD optimization
could be avoided. Before giving our solution, we come back to
our calibration conics. As mentioned above, they share an axis
(in the absence of noise). We assume that their common axis
can be estimated with high accuracy despite noise in the data,
due to using many calibration conics. Once the conics’ axis
is estimated, it is convenient to change the coordinate system
of the calibration plane such that the conics are aligned with
the X-axis. Then, each one of them can be parameterized by
its major and minor axis lengthsbd and ad, as well as by a

displacementkd along theX-axis:

εd ∝





ad 0 −ad kd

0 bd 0
−adkd 0 ad k2

d − 1



 . (16)

The parametersad, bd andkd can be estimated much like in
a classical conic fitting algorithm. We perform all subsequent
computations with those axis-aligned conics. This parameter-
ization guarantees that all viewpoint conics lie in the same
plane (Y = 0), in which they can be expressed as

Ψd ∝





ad bd 0 −ad bd kd

0 bd (ad − bd) 0
−ad bdkd 0 ad bd k2

d + ad − bd



 .

(17)
However, this parameterization does not guarantee other prop-
erties given in Section II-B, especially that these viewpoint
conics all touch in a single point. To achieve this, we state
a new result. For a central radially symmetric camera, the
intersections of all its viewing cones with the calibrationplane
are calibration conicŝεd given by

ε̂d ∝





γ2ρd 0 ǫρdγ + γ
0 δ2 (2ρd + 1) 0

ǫρdγ + γ 0 ρdǫ
2 + 2ǫ − 2



 , (18)

whereγ, ǫ andδ encode the external parameters of the camera,
andρd is a parameter for the distortion circle of radiusd. For
each calibration coniĉεd, the corresponding viewpoint conic
is given by

Ψ̂d ∝







γ 0 ǫ + 1
ρd

0
γ2

−2δ2
−

δ2

ρd

γ 0

ǫ + 1
ρd

0 γ2+2δ2(ǫ−1)+δ2ǫ2ρd

γδ2ρd







. (19)

The derivation and the proof of this formulation are available
in [27]. Note that in practice, we are only interested in the
estimation of̂εd. Much like (7) can be obtained forΨd, we can
compute(fd/d)2 for Ψ̂d. After some algebraic manipulation
using that result (not shown here) we substituteρd in (18) with

ρd = − φdγ
2

2 (γ2 − 2δ2)
− 1

2
, (20)

whereφd is chosen so to be equal to(fd/d)2.
The formulas for estimating the external parameters of the

camera are summarized in Table II and briefly derived below.
The position of the camera is obtained by solving

(X, Z, 1)Ψi (X, Z, 1)
⊤

= (X, Z, 1)Ψj (X, Z, 1)
⊤

for (i 6= j). The value− ǫ
γ gives the X-coordinate of the

intersection point of the optical axis with the calibrationplane.
Indeed, we can verify that

∀d : (−ǫ/γ, 0, 1)Ψd (X, Z, 1)
⊤

= 0,

where Ψd (X, Z, 1)
⊤ is the tangent to the viewpoint conic

at the optical center,i.e. the optical axis. One may won-
der why the extrinsics were not directly “encoded” in the
parameterization. Indeed, such parameterizations exist and
were investigated. However, they were abandoned because the
resulting calibration conicŝεd were not as “simple” as the one
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(a) (b) (c)

Fig. 5. The effect on viewpoint conics of errors on the calibration conics (shown in the same plane for visualization).(a) Original configuration with the
optical center.(b) Added noise to the calibration conics and resulting viewpoint conics. Obviously, finding the closest point to these curves will yield a large
error. (c) Recovered optical center in dark/blue and corrected conicsgiven by our approach,cf. Section IV-B.

TABLE II

COMPUTING THE EXTERNAL PARAMETERS OF THE CAMERA FROM

THE PARAMETERS

Information Formula
X-coordinate of the optical center −

γ

δ2
−

ǫ
γ

+ 2

γ

Z-coordinate of the optical center −

q

−
γ2

−2δ2

δ4

Intersection of optical axis and calibration plane −ǫ/γ
Intersection of calibration plane and principal
plane1 (settingφd = 0)

y = (2 − ǫ)/γ

1 The principal plane refers to the plane passing through the optical
center and being parallel to the image plane.

we propose. When a calibration algorithm could be deduced
from any of these formulations, it was less stable than the one
we show next.

With this global formulation, all calibration conicŝεd should
be fitted a the same time. However, this task is difficult since
the function is non-linear and requires an initial estimateof
the parameters.

Perhaps surprisingly, there exists an analytic solution to
computing the extrinsics parameters once the values ofad, bd

andkd for all calibration conics are estimated. The position of
the camera can be estimated, while ignoring the focal length
at each circle. We exploit the fact that without noise∀d : εd =
ε̂d, i.e. that the unconstrained and constrained formulation
should give identical results2. We solve this equation for each
parameterǫ, γ andφd and obtain

φd = 2δ−1/2a−1
d bd (bd − ad) − 1 (21)

ǫ̃d = −a
−1/2
d

√

γ2 + ad − γkd + 1 (22)

γ̃d = ±δb−1
d

√
ad

√

δ2 + 2bd, (23)

for each calibration conic. Note that the two last equations
involve only the extrinsics parameters. We rename them with
a ˜ and ad subscript because, in the presence of noise, they
are different for each calibration conic. This is because each
calibration conic is fitted individually. Therefore, an estimate
for δ can be obtained by minimizing the variance of theγ̃d. In
our implementation, a minimization overγ̃2

d is prefered, since
it eliminates the square root in the expression. This results in
solving

δ2 = argmin
δ

σ2, and σ2 =
∑

d

(µ − γ̃2
d)2 (24)

2We scaleεd and ε̂d such that they have unity at the upper-left coordinate.

whereµ is the mean. The expressionσ2 is a fourth degree
polynomial inδ2, i.e. it admits only three extrema inδ2. One
of them corresponds toδ = 0 and is a maximum, and the two
others are minima with identical absolute value but opposite
sign. The one larger than zero is our solution forδ2 andδ can
always be taken positive. Given this value, we can estimate
the other parameters withǫ = Mean(ǫ̃d) andγ = ±Mean(γ̃d)
using (22) and (23). This sign ambiguity will be resolved later.
In the presence of noise, we perform a final optimization:

argmin
δ,ǫ,γ

∑

d

(ǫ − ǫ̃d)
2 + (γ − γ̃d)

2 (25)

using a standard Gauss-Newton algorithm.
Once the external parameters of the camera are known, that

is, the value ofδ, ǫ and γ, we are seeking the intrinsicsφd.
Using (21) did not give satisfying results in practice. Instead,
we find ε̂d that best fits the original data points. Given the
external parameters, each calibration conic can be fitted using
a least square algebraic error function resulting in a second
degree polynomial involving the variableφd. We try both signs
for γ and keep the one that best fits the calibration conics.
Many calibration planes. If many calibration planes are
available, the focal length of each circle must be consistent
over all the views. This is accomplished by simultaneously
fitting the calibration conicŝǫd for different planes. This global
Linear Least Square problem is a second degree polynomial
whereφd is the only variable.

The steps of this algorithm are summarized in Fig. 6. In
the following, it is referred to as the Right Cone Constraint
method, “RCC”.

C. NSVP extension

Our previous SVP model can be generalized allowing an
NSVP. Due to lack of space, it is not described here. Our tests
demonstrated that such a parameterization is not that useful
in practice. Indeed, the parameters can only be recovered by
means of optimization that would require initial estimatesof
the parameters, which are difficult to obtain.

V. COMPUTING THE DISTORTION CENTER

Until now, we have assumed, for both algorithms, that the
distortion center was known; this information was used to
select the distortion circles. Recall that the distortion center is
also the principal point of the camera in our model. Tests with
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INPUT: Dense plane–image correspondences

ALGORITHM:
For each calibration planev:

• Estimate individually every calibration conicεd.
• Compute the average major axism and select a point,

denotedg, on the axis.
• Change the coordinate system of the original data to

setm on theX-axis andg at the origin.

• Estimate the newεd of the form: ∝

2

4

a 0 c
0 b 0
c 0 d

3

5.

• Solve (24) to obtainδv.
• Minimize (25) and obtainǫv, γv.

Compute, for all distortion circlesd, φd using (18).
Perform iterative refinement of the reprojection error.

Fig. 6. Complete algorithm for theRCC calibration approach.

noiseless simulated data showed that the calibration may be
quite sensitive to a bad choice of distortion center; indeed, like
for real cameras, using the image center as an approximation
was not satisfying in general. Hence, the distortion center
must be estimated as part of the calibration process. Note
that using Hartley-Kang’s algorithm is not satisfactory in
general since the criteria for choosing this point is in terms
of image rectification. Besides not being applicable to non-
central cameras, these criteria do not correspond to our model.
Below, we propose one where the recovered distortion center
is identical to the principal point. The sensitivity of calibration
we observed in simulations suggests that it should be possible
to estimate the distortion center rather reliably, which was
confirmed in practice.
Algorithm. We used the following heuristics to define an
optimization criterion for the distortion center. Let us apply the
IAC approach of Section III-A with several images as input.
The plane-based calibration for each distortion circle is then
capable of estimating a principal point, besides the focal length
fd. It seems plausible that the better the assumed distortion
center was, the closer the estimated principal points will be to
it. Since plane-based calibration is applied on images centered
on the assumed distortion center, we can consider the average
distance of the estimated principal points (one per distortion
circle) as a measure for the goodness of the center.

Figure 7 shows the values of this measure, computed for
distortion center positions on a60 × 60 grid around the
image center, for real cameras. The shape of the cost surface
indicates that we can find the optimum distortion center using
a simple steepest descent type method. We implemented such
an approach that accurately finds the distortion center within
a couple of minutes of computation. Note that the second
column of Fig. 7 shows that, although the principal points
used to plot it were computed individually per distortion circle,
they are very densely clustered (average distance to assumed
distortion center of less than 3 pixels). This suggests a high
stability of the calibration.
Discussion. Compared to other approaches, our optimization
criterion is chosen to find the best optical axis. Thus, the
distortion center is identical to a principal point in a pinhole
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Fig. 7. Plots of the goodness measure for the distortion center, obtained for
three tested lenses (cf. Section VII). (a,c,e)60 × 60 grid around the image
center (yellow/dark meaning smaller).(b,d,f) One slice per plot, through the
respective minimum.

camera. This formulation is also used in [9], [28], [29]. Our
criterion is different from the one in image-based distortion
functions, where the distortion center (together with the distor-
tion function) is chosen to maximize the linearity of rectified
line images [8], [12], [25], [31]. However, the latter can result
in instability for the estimation under very low distortionand,
more importantly, is not optimal when the camera is NSVP
since image rectification is not possible. In theory, ours isnot
subject to these problems even when no distortion is present.
This is confirmed by the nice shape of the error function
for the 8.0mm camera as show in Fig. 7. For these reasons,
the distortion center computation will not be included in the
comparison with Hartley-Kang’s approach.

VI. PRACTICAL ISSUES

A. Dense Plane–Image Correspondences

The easiest approach we found to get dense correspondences
between the calibration plane and the camera is to use a flat
screen. We used a simple coded structured light algorithm [16],
which consists in displaying a sequence of patterns of horizon-
tal and vertical black and white stripes of varying thickness on
the screen to encode the position of each screen pixel (cf. Fig.
8). Then, for each camera pixel, we identify the corresponding
position on the calibration plane by decoding the observed
intensities in each pattern. We found that, when performed
in a controlled environment (low-constant ambient lighting,
screen of high contrast and resolution), the accuracy of such a
method is good enough for calibration. Indeed, we only used
correspondences of pixel precision (see [23] for details).Since
the points located on the distortion circles are given in floating
point coordinates, we compute their correspondences by a
weighted sum of the correspondences recovered for the four
closest image pixels. Besides allowing dense correspondences
with the calibration plane, these approaches render trivial the
problem of recovering the structure of the calibration plane.
This is as opposed to using calibration grid images where grid
points must be automatically extracted and identified. Thisis
especially difficult when the distortion is very large.
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(a) (b) (c)

Fig. 8. Projected patterns for correspondences are horizontal and vertical
black and white stripes. Images taken with(a) the Goyo 3.5mm,(b) cata-
dioptric, and(c) paracatadioptric camera (cata-12mm).

B. Omnidirectional Cameras

There are several issues worth mentioning for omnidirec-
tional cameras. If the field of view is larger than180◦,
then some distortion circles will have viewing cones that
actually approach planes. For theRCC approach, this means
that fitting the calibration conic may become unstable. These
cases can be detected as the ones whose correspondences on
the calibration plane are close to collinear. In practice, they
are discarded from the actual calibration procedure. In the
case of the homography-based algorithm that uses all matches
simultaneously, no special attention is needed.

C. Non-linear optimization

Becausefd is a function of the radius in the distorted image,
it is not straightforward to perform the projection of a 3D point
into the image (as opposed to the backprojection of image
points to 3D). This means that (8) can not be used directly to
perform a non-linear optimization of the calibration unknowns.
Since the focal length function can not be inverted when it
crosses zero, it is preferable to define the distortion in terms of
view angleθd. As seen in Fig. 14(b), this function is generally
simple, so easily invertible. Given this function, the radius of
the image of a 3D point is computed from the angle between
the optical axis and the line spanned by the optical center and
the 3D point. The non-linear optimization is then performed
with θd instead offd. The NSVP case can not be handled as
simply, since there is no single optical center relative to which
to compute the angleθ. In this case, we use (8) and estimate
a radiusdi associated to each 3D–2D correspondence, along
with the other parameters. This yields a sparse non-linear prob-
lem. We also enforce monotonicity onfd andθd. For example,
this can be done approximatively by adding terms to the cost
function, of the form:(|fd − fd+s| − (fd − fd+s))

2
, s > 0,

which is a quadratic penalty if the constraints are not enforced,
but gives0 otherwise.

VII. E XPERIMENTS

We tested our approaches using different types of cameras
with simulated and real data. They were also compared to
Hartley-Kang’s algorithm [12] (referred to as “HK”). Since
the view angle of some of our camera is larger than180o, we
implement the algorithm for a spherical retina.

A. Simulation

SVP cameras. We simulated two types of cameras: wide-
angle with small radial distortion and fisheyes with large dis-

tortion3. The focal length (and distortion) function of each type
of camera was built randomly via monotonically decreasing
polynomials of fifth degree. We used an image size comparable
to our own camera: 1 Mega pixel (see real data). The shapes of
focal length functions of the wide-angle cameras were similar
to our 15mm (Fig. 14) and we usedfd with f0 = 1000± 200
pixels. The simulated fisheyes were analogous to our 3.5mm,
so we usedf0 = 400 ± 100 pixels and the shape of the focal
length function yielded a field of view close to180o. In these
tests, we assumed a known distortion center and also made
sure the camera was never placed in a near fronto-parallel
position w.r.t. the calibration plane.

We compared the reprojection error, the error on the pose
and on the calibration. We define the latter as the average
difference between the recovered focal length functionfd and
the ground truth. Our tests showed that all of them are highly
related, so we only show results for the reprojection error.The
reprojection errors for the three algorithms w.r.t. noise and
the number of used cameras are shown in Fig. 9. We added
Gaussian noise of standard deviation up to 4 pixels to the
original data, which consisted of 50 points per distortion circle
(which is rather small compared to the several hundred usually
available from a structured light dense mapping). In all our
tests, data on the distortion circles are not necessarily evenly
distributed. Especially in the case of very large field of view,
only a portion of the image effectively sees the calibration
plane. We made sure to properly simulate this effect. Finally,
our tests were performed using 3, 7 and 10 views.

In general, all three algorithms performed similarly. The
RCC obtains results for the wide-angle camera similar to the
other two. However, this is not the case for the fisheye camera
because the data points were not uniformly distributed around
the distortion circles. Hence, the pose estimation was not as
stable. This exposes a weakness of this approach: if the pose
for one view is badly estimated, it can potentially destroy the
estimation of the focal length function even using many views.
This effect is not as important for theHB since the focal length
function is estimated with the position of the camera on the
optical axis using all the views.
NSVP cameras. We performed an in-depth analysis of the
performance of our algorithms for NSVP cameras. Three
aspects were considered. First, how well the displacement
along the optical axis can be recovered under noise. Second,
is the linear NSVP algorithm useful in practice? Third, does
the NSVP model overfit when the camera is actually SVP?
We performed our tests using the homography based approach
because it is the only one that naturally enforces both SVP and
NSVP constraints. Two approaches were tested:

1) Initialization using linear calibration based on an SVP
assumption, followed by non-linear optimization of the
NSVP model.

2) Initialization as well as optimization using the NSVP
model.

The tests were performed on simulated SVP and NSVP cata-
dioptric cameras with viewpoints moving along the optical axis

3We did not compare catadioptric cameras with theHK approach because
the comparison would have been unfair.
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(a)RCC wide-angle
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(b) HB wide-angle
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(c) HK wide-angle
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(d) RCC fisheye
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Fig. 9. Reprojection errors (in pixel) for the simulatedwide-angleandfisheyecameras.

(Fig. 10(a,d)). We used 10 different positions for the planeand
added Gaussian noise of standard deviation 1 pixel to the data.
Beyond this noise level, we found that our approach could not
accurately estimate the viewpoint displacement. Three hundred
points per image were used and polynomial models of degree
5 for the calibration were used. A typical behavior of the two
approaches is shown in Fig. 10. This leads to the following
observations:

• For an SVP camera, both optimizations should lead to
similar results (negligible NSVP);

• For an NSVP camera, enforcing an SVP yields a biased
focal length function (cf. Fig. 10(f)). In some cases, this
can be satisfying in terms of reprojection error, like for
one of our real cameras (cf. Fig. 13);

• When the model is refined to includetd, the optimization
might not converge to a satisfying minimum;

• If the camera is NSVP, the second approach should
perform better, but only if the noise is sufficiently low
(cf. Fig. 10(d)). Otherwise it can result in worse results
because solving with (15) is not as stable as with (9).

B. Real data

Several camera configurations were tested. First, a CCTV
Basler A201bc was combined with a fisheye Goyo 3.5mm
lens, to an 8mm Cosmicar lens with small distortion and to
a RemoteReality catadioptric lens combined with a 12.5mm
Cosmicar lens (referred to as “cata-12mm”). Secondly, a
Canon SLR was combined with a fisheye 15mm lens and to a
0-360 catadioptric lens combined with a 30mm lens (referred
to as “cata-30mm”). In all cases, the calibration plane of
known Euclidean structure was a 20 inch LCD screen. The
number of calibration views was between 8 and 10 for the
different experiments.

Figure 14(a) gives the computed focal length of the 15mm,
3.5mm, cata-12mm and cata-30mm, w.r.t. the distanced to the
distortion center, using all methods. These are the functions
that were recovered without further optimization based on the
reprojection error. Table III shows the average reprojection
errors of the three algorithms for all cameras. In many cases,

TABLE III

COMPARISON OF THE AVERAGE REPROJECTION ERRORS. NL REFERS TO

NON-LINEAR OPTIMIZATION .

Algorithms
Cameras RCC RCC+NL HB HB+NL HK HK+NL

cata-12mm 4.60 1.21 1.28 1.14 1.02 0.96
cata-30mm — — 1.42 1.33 — —

3.5mm 6.89 1.15 1.46 1.06 2.53 1.16
8mm 10.74 3.01 6.64 3.08 10.92 3.10

Canon 15mm 0.56 0.48 0.51 0.48 0.51 0.48

(a) (b)

Fig. 11. Image rectification for the Basler camera with the 12.5mm lens and
the RemoteReality lens (cata-12mm).(a) Original image.(b) Rectified image
for a rotated view.

the cameras could be calibrated from a single image of the
screen (cf. Fig. 12 for theRCC), although in general, we
recommend using at least five images for good stability. Recall
that our structured light based matching provides a large
number of correspondences. The cata-12mm was calibrated
with all the approaches (except for Hartley-Kang’s approach
where only the portion of the image corresponding to forward
cones was used) with very similar results (cf. Fig. 14). As
for the cata-30mm, since it was found to be non-central, as
described later in this section. TheRCC gave very accurate
results, however only with a limited number of planes. The
difficulties arose when not enough data were available to allow
a good fitting of the calibration conics. We handled this by
dropping these planes and use only the other ones.

If discrete values forfd are computed, instead of e.g. a
polynomial function, then only a subset of distortion circles
are used for calibration; others can then be extrapolated or



TARDIF et al.: CALIBRATION OF CAMERAS WITH RADIALLY SYMMETRIC DISTORTION 12

-2

 0

 2

 4

 6

 8

 0  50  100  150  200  250  300  350  400

di
sp

la
ce

m
en

t (
pi

xe
ls

)

Radius (image pixel)

Ground
NSVP

SVP
NSVP after SVP

(a) SVP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0  1  2  3  4  5  6  7

di
st

rib
ut

io
n

error distribution (image pixel)

Ground
NSVP

SVP
NSVP after SVP

(b) SVP

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400

fo
ca

l (
pi

xe
ls

)

Radius (image pixel)

Ground
NSVP

SVP
NSVP after SVP

(c) SVP

-15
-10

-5
 0
 5

 10
 15
 20

 0  50  100  150  200  250  300  350  400

di
sp

la
ce

m
en

t (
pi

xe
ls

)

Radius (image pixel)

Ground
NSVP

SVP
NSVP after SVP

(d) NSVP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0  1  2  3  4  5  6  7

di
st

rib
ut

io
n

error distribution (image pixel)

Ground
NSVP

SVP
NSVP after SVP

(e) NSVP

 100

 150

 200

 250

 0  50  100  150  200  250  300  350  400

fo
ca

l (
pi

xe
ls

)

Radius (image pixel)

Ground
NSVP

SVP
NSVP after SVP

(f) NSVP

Fig. 10. The two optimization algorithms (see text for details) with simulated data.(a)+(d) The recovered displacementtd. (b)+(e) The error distribution.
(c)+(f) The focal length functions compared to the ground truth.

400 500 600 700 800
X0

100

200

300

400

500

600

Y

(a)

850 900 950 1000 1050
pixel

-200

-150

-100

-50

pixel

(b)

0 200 400 600 800 1000
X

0

100

200

300

400

500

600

Y

(c)

-150 -100 -50 50 100 150 200
pixel

-300

-250

-200

-150

-100

-50

pixel

(d)

Fig. 12. Calibration with theRCC approach.(a) Fitted ellipses for the Goyo 3.5mm lens and(b) Corresponding hyperbolas, computed intersection and optical
axis (gray line).(c) For the cata-12mm camera, the intersection between the calibration plane and the cones yielded ellipses and hyperbolas, constraining the
viewpoint to lie respectively on hyperbolas and ellipses.(d) Intersection of the viewpoint conics.

interpolated from a polynomial fitting of the data. Let us
define this polynomialp; from the camera model, it is best to
ensure that its derivative at 0 (corresponding to the distortion
center) is 0. This constraint is due to the symmetry of the
distortion model. Another criterion is that the function should
be monotonically decreasing. This last constraint is not directly
enforced in our algorithms. However, this did not seem to
be an issue in our tests. In practice, polynomials of degree 5
appeared to be sufficient. To handle the case of omnidirectional
cameras more appropriately, the interpolation is carried out
with the view angle instead of the focal length. In this case,
a monotonically increasing polynomial passing through 0 can
also be fitted (see Fig. 14(b)).

Both catadioptric cameras cata-12mm and cata-30mm are
typical examples of configurations yielding multiple view-
points. Indeed, both mirrors are parabolic and the mounted
lenses are perspective [22]. However, only the second one was
found to be NSVP (cf. Fig. 13 and Table IV). We conjecture
that although our 12.5mm camera is not orthographic, it has a
field of view sufficiently small to provide a locus of viewpoints
very close to a single effective viewpoint. To verify our
hypothesis, it would be useful to perform the test with more
specialized equipment like in [22].

Evaluating the results based on the reprojection error can
lead to biased conclusions in the case of a generic model.
Indeed, the model offers more freedom which allows to fit
the data better. Meaningful quantitative results were obtained
for the Goyo 3.5mm lens, using a pose estimation procedure.

TABLE IV

COMPARISON OF THE AVERAGE REPROJECTION ERROR FOR DIFFERENT

CONSTRAINTS ON THE VIEWPOINT. ’L’ REFERS TO THE LINEAR

ALGORITHMS AND ’NL’ TO NON-LINEAR OPTIMIZATION OF THE

PARAMETERS.

Algorithms-Constraints

Cameras SVP-L SVP-NL
NSVP after

SVP-NL NSVP-L NSVP-NL

cata-12mm 1.65 1.08 1.06 1.58 1.12
cata-30mm 2.22 1.93 1.73 1.42 1.33

Using a translation stage, the camera was moved to three
positions with known relative motion (no rotation, known
translation). Using the calibration information (obtained using
other images), the pose of the camera relative to the calibration
plane was computed for all three positions. From this, the
relative motions were computed and compared to the ground
truth. The results presented in Table V show a good stability
for all methods.

Images from three panoramic cameras were rectified based
on the calibration results (cf. Fig. 16 and 11(a,b)). For the
wide-angle Goyo lens and the cata-12mm, the results seem to
be very good, even towards the image borders (cf. fig. 16(b)
and the inset images in 11(b)).

Finally, a home-made catadioptric device built from a Fu-
jinon 12.5mm lens pointed at a roughly spherical mirror was
tested (cf. Fig. 15). Although its radial configuration was not
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Fig. 13. The two optimization algorithms (see text for details) with our catadioptric cameras.(a)+(d) The recovered displacementtd, (b)+(e) The distribution
of reprojection errors.(c)+(f) The recovered focal length functions.

(a) (b) (c)

Fig. 16. Image rectification.(a) Original images.(b) Rectified image for the Goyo 3.5mm.(c) Rectified image for the home-made catadioptric camera.
Small inset images show rectification of the border regions.

TABLE V

RESULT FOR POSE ESTIMATION. THE CAMERA WAS MOVED TO THREE

POSITIONS WITH KNOWN RELATIVE MOTION. COEFFICIENTSpij AND aij

DENOTE THE DISTANCE(IN CENTIMETERS) AND RELATIVE ANGLE (IN

DEGREES) BETWEEN CAMERA POSITIONSi AND j .

Position Angle
Algorithms p01 p12 p02 a01 a12 a02

Ground truth 5 5 10 0o 0o 0o

RCC 4.94 5.00 9.93 0.83o 0.1o 0.92o

HB 4.90 4.94 9.85 0.79o 0.79o 1.6o

HK 4.90 4.96 9.86 0.84o 0.68o 1.51o

perfect, the distortion center could be found and a satisfying
calibration could be obtained with our methods. The “HB”
approach gave the best results because it could take advantage
of up to eight images, which is more robust to the imperfect
configuration of the camera. The rectification is surprisingly
good for a large part of the image, especially around the
borders (cf. Fig. 16(a,c)). The remaining distortions in the
center were found to be caused by a small bump on the
“mirror’s” surface.

VIII. S UMMARY AND CONCLUSION

We have proposed new calibration approaches for a camera
model that may be a good compromise between flexibility
and stability for many camera types, especially wide-angle
ones. Previous work showed that theRCC approach might
have a limited practical usability because of stability issues
[24]. This was because only one calibration plane could be
used directly and because camera position was recovered in
two steps: conic fitting and finding the closest point to a
set of viewpoint conics. Both issues were addressed in this
paper and we showed that the use of theRCC approach is
very well suited when performed with only few camera poses.
However, our homography-based approach introduced in this
paper is preferable. It can be adapted to using a polynomial
distortion model and extended to NSVP configurations. This
allows to perform calibration without a dense plane-to-image
matching, unlike the previous approach. Those reasons, and
the fact it was the most reliable in our experiments, lead us
to recommend theHB approach overRCC.

Hartley-Kang’s approach gives very good results with the
benefit that it has an elegant solution for the distortion center
estimation. Our approach gives a similar accuracy, but can also
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Fig. 14. - (a) Recovered focal length (in pixels) for the three algorithms
(after polynomial fitting of the data).(b) Recovered view angle (in degrees).
These calibration curves were obtained without optimization based on the
reprojection error. Performing such an optimization lead to very similar results
in general. Observe that for the catadioptric cameras thereare negative focal
lengths, meaning that their view angle is larger than180o .

Fig. 15. Home-made catadioptric camera built from a Basler A201bc camera
with a Fujinon 12.5mm lens pointed at a Christmas ornament representing a
roughly spherical mirror.

deal with NSVP cameras, which is one of the main goals of
this work.
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