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Calibration of Cameras with Radially
Symmetric Distortion

Jean-Philippe Tardif, Peter Sturm, Martin Trudeau, andaSéen Roy

. . . Backward
Abstract— We present algorithms for plane-based calibration ackward cones

of general radially distorted cameras. By this we understad
cameras that have a distortion center and an optical axis suc
that the projection rays of pixels lying on a circle centeredon

the distortion center, form a right viewing cone centered onthe
optical axis. The camera is said to have a single viewpoint {&)

if all such viewing cones have the same apex (the optical cenm},
otherwise we speak of NSVP cases. This model encompasses the
classical radial distortion model [5], fisheyes and most cdral or
non-central catadioptric cameras.

Distortion axis

Calibration consists in the estimation of the distortion ceter, Image
the opening angles of all viewing cones and their optical ceers. 5 4
We present two approaches of computing a full calibration Viewing cone <\/}
from dense correspondences of a single or multiple planes thi 3

known Euclidean structure. The first one is based on a geometr f
constraint linking viewing cones and their intersections vith the 4 Distortion
calibration plane (conic sections). The second approach ian L

homography-based method. Experiments using simulated and . . o
broad variety of real cameras show great stability. Furthemore Fig. 1. Our camera model in the case of a non-central projeqtee text
' ' for explanations). The inlayed illustrations show thedtisbn center (in blue)

we provide a comparison with Hartley-Kang's algorithm [12],  4nq four distortion circles and their corresponding vieyone and optical
which however can not handle such a broad variety of camera center.

configurations, showing similar performance.
Index Terms— Calibration, omnidirectional vision, fisheye,
catadioptric camera. In this paper, we use a model of this category which we find
sufficiently general to model many common types of cameras.
I. INTRODUCTION By having fewer parameters than the fully generic model,

N the last few years, we have seen an increasing intergatibration remains easy and stable. It encompasses many

in non-conventional cameras and projection models, goifggmmon camera models, such as pinhole (modulo aspect ratio
beyond affine or perspective projection. There exists aelargnd skew), the classical polynomial radial distortion mpde
diversity of camera models, many of which specific to certaffsheyes, or any catadioptric system whose mirror is a serfac
types of projections [14], [17], others applicable to faeslof of revolution, and for which the optical axis of the perspext
cameras such as central catadioptric systems [2], [3][9T], (or affine) camera looking at it is aligned with the mirror's
All these models are described by a few intrinsic parametefgvolution axis. We describe our model in the following and
much like the classical pinho|e model, possib|y enhancéﬂfer to Flg 1 for an illustration. Cameras are modelengsin
with radial or decentering distortion coefficients. Cadition the notion of adistortion center in the image whose back-
methods exist for all these models, and they are usuallgrtail Projection yields theoptical axis in 3D. For cameras with
made for themj.e. can not be used for any other projectioriadially symmetric distortion , the projection rays associated
model [15]. Several works address the calibration problewith pixels lying on a samelistortion circle centered on the
from an opposite point of view, by adopting a very generidistortion center, lie on a rightiewing conecentered on the
imaging model that incorporates most commonly used cameggical axis. In the following, we denote by the radius of
[6], [10], [11], [20], [22]. a distortion circle; for ease of expression, we also speak of

In the most general case, cameras are modeled by attribuﬂ*i@lortion circled, meaning the distortion circle of radius
an individual projection ray to each pixel. Such a model is For a perspective camera with focal length the open-
highly expressive, but it is difficult to obtain a stable badi- ing angle of a distortion circle’s viewing cone, is given by
tion of cameras with it, at least with few input images takeRarctan 4. Hence, the opening angles of all viewing cones are
in an uncontrolled environment. Finally, several researgh “dictated” by the camera’s focal length. In our model, ttgs i
have proposed a compromise between parametric and sgeheralized: in the most general case, one may not assume any
generic models. They assume radial symmetry around ttedation between opening angles of different viewing cones
distortion center (often considered as coinciding with thie other words, we may have one individual focal length
principal point), but with a general distortion function2]1l per distortion circlel. We may define &cal length function
[24]1-[26], [28], [29]. fa = f(d). In practice, we handle such a general model in two
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different ways: by assuming a polynomial form for the focahe case of a general model such as the one we propose,
length function, or by subsampling it and estimating/usingn approach directly estimating a non-central projectivesy
one focal length per discrete sample @fWe also consider better accuracy than an approach based on: 1) estimating an
its reciprocal, thedistortion function that maps the opening approximated central projection, 2) iterative refinemesihg
angle of a viewing cone to the radius of the associatednon-central model [15].
distortion circle. Organization. A geometric study of our model is presented

Let us introduce a few additional notations. A line spanndd Section Il. Our first calibration approach, akin to plane-
by a pixel and the distortion center is calledaalial line and based calibration of perspective cameras, is described in
the plane spanned by the projection ray associated with tBection Il followed by our second, more geometric, apphoac
pixel and the optical axis, rdial plane. In our camera model, in Section IV. Our algorithms assume a known position of
we specify that angles between radial lines and associathd distortion center, but we also show how to estimate
radial planes are identical (otherwise, it would be a veiy, using repeated calibrations for different candidatef,
uncommon camera). Our model comprisetral cameras Section V. Several practical issues and experimental teesul
(SVP), where all viewing cones have the same apex (tirecluding a comparison with Hartley-Kang's methods [12E a
optical center), but alsonon-central ones (NSVP), for which presented in Section VI and Section VII, respectively. Bna
the viewing cones’ apexes lie anywhere on the optical aris. We conclude in Section VIII.
the latter case, we may speak of one optical center per viewin
cone. For convenience, these terms are summarized in Table |
Problem statement. We want to calibrate cameras based on
the above model from one or several images of a calibrationIn this section, we present geometric constraints for
plane in unknown positions. Calibration consists in estinga our camera model. Readers interested in implementing the
the camera’s focal length function or, equivalently, itstdi- homography-based approach may wish to skip to Sections II-C
tion function. Further, for the NSVP case, we have to esémaand IlI.
the optical centers associated with all distortion circles

The problem of calibration from a planar scene of known . : ) ) L
geometry has been studied intensively in computer visibn.A- One Distortion Circle in One Image of a Calibration Plane
is widely accepted that one seeks a solution that minimizesLet us consider one distortion circle in the image plane.
the sum of reprojection errors of the points on the calibrati Its associated viewing cone cuts the calibration plane in a
planes. This being a non-convex function, iterative meshodalibration conic. From dense matches between image and
must be used. Besides the problem of convergence tocalibration plane, we can compute this calibration conée(s
local minimum, they require some estimate for the intern&ection VI for more on the dense matching). This conic can
parameters of the camera, generally provided by the caméga either an ellipse or a hyperbola (the parabola is only a
manufacturer [1], [13]. Both these difficulties can be ovetheoretically interesting case). If we knew the positiortod
come by non-iterative approaches relying on algebraicrermamera’s optical center relative to the calibration plathen
functions as long as they provide good accuracy. Then, thege could directly compute the viewing cone of our distortion
results can be refined iteratively using a geometric error. circle, i.e. the cone that has the optical center as apex and
Contributions. Our contributions take the form of two non-that contains the above calibration conic. As mentionest, th
iterative calibration algorithms. Their input is the Edean cone has several useful properties: its axis is the camera’s
structure of the plane(s) and a dense or sparse matchapgical axis and it is a right conég. rotationally symmetric
between the plane(s) and the camera image. The first approatth respect to its axis. From the cone, the focal length ef th
is based on algebraic constraints relating the projectfdhe considered distortion circle can be easily computed: thme'so
points on the calibration plane on the image. It is based opening angle equals the field of view.
the observation that each distortion circle and the astatia In practice, we do not know the optical center's position
viewing cone can be considered as an individual perspectietative to the calibration plane. In the following, we show
camera. Hence, the projection of a calibration plane to tlygometrical relations between the calibration conic, thtical
image, when reduced to a single distortion circle, can lenter and the optical axis of the camera, that allow to cdepu
expressed by an homography and we can readily apply platiee optical center. Recall that when talking about optical
based calibration algorithms designed for perspectiveecasn center, we mean the optical center per distortion circley tl
Our second approach is based on a detailed geometric amalyi@ on the optical axis and in the SVP case, they are identical
Consider one image of a calibration plane; each viewing conewithout loss of generality, we assume that the calibration
of the camera intersects the calibration plane in a coniechvh plane is the plangZ = 0, and that the calibration conicis
we call calibration conic. We describe geometric constraintgjiven by the matrixc  diag(a,b, —1) with |b| > a > 0 (x
relating calibration conics to the orientation and positaf represents equality up to scalép. the X -axis is the conic’s
the camera as well as its intrinsic parameters; these af@jor axis. The type of the calibration conicdepends om
at the basis of our second calibration approach. Our firshdb as follows:
approach usually performs best in practice. Furthermdre, i {

Il. GEOMETRY

b>a>0 ellipse
b<0 and |b| >a>0 hyperbola

can accurately estimate the projection model for a nonraent
camera. Based on our experimental results, we argue that in

1)
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TABLE |
SUMMARY OF THE TERMS RELATED TO OUR CAMERA MODEL

Terms | Description

Optical axis A line perpendicular to the image plane

Distortion center The intersection between the image plane and the optical axi

Distortion circle A circle in the image centered in the distortion center

Viewing cone Back-projection of a distortion circle; a right cone ceptkin the optical axis
Calibration conic Intersection of a viewing cone and a calibration plane

Radial line A line passing through the distortion center

Radial plane Back-projection of a radial line

Central projection All viewing cones have identical apex, the optical center

Non-central projection The viewing cones only share the same (optical) axis

(b)

Fig. 2. lllustrations of the geometry of viewing cones, lsadtion conics (here ellipses) and location of optical eenih the SVP case(a) Complete
illustration for one viewing cone(b) View of the calibration plane, showing many cones’ calilomatellipses. Note that their major axes are collinda).
Side view of the viewpoint conics (hyperbolas in this cas=soaiated with many calibration conics.

Our aim is to provide constraints on the position of the @gdticas above) and to the second one if:
center, as well as on the orientation of the optical axignfro
this conic. We first do this for the case of a calibration elip

then for the case of a hyperbola. This equation tells us that the optical center lies oview-

The case of calibration ellipses. Let us first state a well- point conic given by the following matrix and the associated
known result. Consider a right cone whose apex is a poig§uation

with real coordinates, and its intersection with a planer. Fo

abX?+bla—b)Z*+ (a—b) =0. (3)

now, we assume that the intersection is an ellipse (the dase o ab X
the hyperbola will be discussed later). It is easy to proa th¥ b(a —b) ) (X Z 1) vz =0
the orthogonal projection of the cone’s apex onto the plane, a—=b 1
lies on the ellipse’s major axicf Fig. 2(a)). This implies )

that the cone’s apex lies in the plane that is orthogonal ¢o tﬁl?is :15 da' hyPergo'a’ dueh o > a = 0 (cf. (1)) it is
ellipse’s supporting plane and that contains its major.axis sketched in Fig. 2(a). Furthermore, its asymptotes cooresp

For our problem, this means that the optical center must iR t_he d_lrectlo_ns of the two circular cylinders that conttiie
in the planeY = 0 (since the ellipse lies in plang = 0 and calibration ellipse. . . . . .
has theX-axis as major axis). We may further constrain its Let us now conS|der_the orientation of th-e optical axis. Due
positionC = (X, 0, Z, l)T, as follows [4]. The cone witlC to (3), we have an optical center given by:
as apex and that contains the calibration ellipsis given by

abX?2+a-0
Z =4+ — 5
aZ® 0 —aXZ 0 b(b—a) ©
0 bZ? 0 0 .
A x 9 Here, we exclude the case= b, which would correspond to
—aXZ 0 aX*-1 7 . - . .
0 0 7 2 the camera looking straight at the calibration plane.

The direction of the cone’s axis is given by the eigenvector

For this cone to be a right one, its upper I8fk 3 matrix A~ @ssociated with the single eigenvalue/ofi.e. the third one,
must have a double eigenvalue. The three eigenvalues are@ugmented with a homogeneous coordirtate

(00— a)(abXZ+a—b) 0 abX 0). (6)

a(X2+22) -1+ \/4(1 72 4+ (1—a (X2+22))?
’ 2 - (2} We now show that the cone’s axis is identical to the tangent

The second and third eigenvalues can not be equal for r%ﬂ%?{?neigglﬁal:étfhi%F))tlcal centetC, which is given by

values of X and Z (besides in the trivial cas& = Z = 0
which is excluded since it would correspond to the optical X abX
center lying in the calibration plane). The first eigenvaisie U(Z|=[F/bb—a)(abX2+a—D)
equal to the third one i = 0 (excluded for the same reason 1 a—>b

A
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Optical axis only happen when the camera looks straight at the calibratio
plane.
Iback Let U, be the viewpoint conic associated with distortion

circle (of radius)d, all ¥4 being given in the same coordinate
frame. In the case of a single viewpoint camera, the optical
center must lie on all these conics. Furthermore, the dptica
axis is tangent to all of them. This implies that all conics
touch each other (have a double intersection point) in the
optical center. This is illustrated in Fig. 2(c). A naivgailithm
N would compute the viewpoint conic for all calibration comic
Original circle - . . .
Rectified circle \ and seek their single intersection/contact point. Howexany
little noise can cause two viewpoint conics to have no real
intersection point at all, instead of a double one.

. . o _ Interestingly, this constraint gives a geometric explamat
Fig. 3. Viewing cones can also be seen as individual perspecameras

with different focal length. A rectified image can be obtairngy projecting of the ambiguity, or correlation, betwee.n Ca.mera pOSitiDd a
the distortion circles (which lie in different planes) oneoplanellont (or  focal length that often occurs when calibrating a cameranfro

Ipack for a field of view larger thani80°). a single view. Consider perfectly recovered viewpoint ceni
(such as in Fig. 2 (c)), the ambiguity is observed as the area
where the viewpoint conics are “very close” to each other.

Cone in opposite direction

Its point at infinity is (still in the plan&” = 0) Clearly, a very low perturbation of the curves can result in
T significant but correlated errors on the optical center ded t
(/00— a)@bXZ1a—1b) abX 0), oo ongth P

i.e. it is identical with the point given in (6). Hence, for an In the NSVP case, a separate optical center corresponds to

optical center on¥, the optical axis is directly given by the each distortion circle and viewing cone. Hence, the viewpoi

associated tangent. conics will not have a single contact point anymore. Howgver
Coming back to (2), the eigenvalues of the cone can be udbé optical axis is shared by all viewing cones. Hence, ihés t

to compute the focal lengtfy; associated to a distortion circlesingle (in general) line that is tangent to all viewpoint iosn

of radiusd (see Fig. 3). The valug;/d is the tangent of half Furthermore, each contact point with the optical axis is the

the opening angle of the viewing cone. Furthermore, it cassociated optical center.

be shown that f;/d)? equals the negative of the ratio of the

double and the single eigenvalue &fi.e. the negative of the

ratio of the first and the third eigenvalues given in (2). Lgsinc' Model parameterization

(5), we get It is possible to consider the distortion circles and associ
5 ) ated viewing cones as individuplerspective camerasith
(ﬁ) _ b (abX ta— b) _ @) different focal lengths but identical principal points [2f26].
d a(a —b) In the SVP case, extrinsic parameters of all these cameeas ar
This relation will prove useful in Section IV-B. identical, whereas in the NSVP case, they all share the same

The case of calibration hyperbolas. The case where the orientation and the optical centers are merely displacedgal

intersection between a cone and the calibration plane yiel#® optical axis. o .

a hyperbola is accounted for automatically by the previousl-€t Us consider the distortion circle of radidsand one
formulation. All above findings hold here, with the exceptioiMage of a calibration plane. From point correspondences
that the viewpoint conial is an ellipse. This case typically between pixels on thl_s cwcle_and points on the calibration
occurs with very wide angle cameras or when the andPéa”e (on the calibration conic), we can compute a plane-

between the camera’s optical axis and the calibration plaffsimage homographi,. For simplicity, let us assume that
is large. image coordinates have been translated to put the distortio

center at the origin. The homography can then be decomposed
. . . . such that

B. Multiple Distortion Circles

So far, we have shown that for an individual distortion
circle, the associated viewing cone can be determined from
the associated calibration conic, up to 1 degree of freedom
(location on the viewpoint coni@ and associated orientationwhere « means equality up to scal¢z,y) is a calibration
of the optical axis). We now show how to get a unique solutioppint, (u,v) a pixel on the distortion circle, anfl andt, a
when considering several distortion circles simultangoligt rotation matrix and translation vector representing canpeise
us first note that calibration conics corresponding to diffc  (same for alld). The scalart; allows to model translational
distortion circles are not independent: their major axes adisplacement of individual viewing cones along the optical
collinear ¢f. Fig. 2(b)), even in the NSVP case. Their centeraxis (given byrl, the third row ofR), which is needed for
are not identical however, unless they are all circles, tvben NSVP cameras. For SVP camergg,is set to 0 for alld.

z 1 0
xHgly] =KgR |0 1 —t+4tgrs , (8)
1 0 0

—e 8
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As for K4, it is a calibration matrik diag(f4, f4,1), where SVP case, one imageln the SVP caset, is zero for alld.
fa is the focal length associated with the considered distortilt follows that
circle. We may interpret the relation betwednand f; as 1 1
a di_stortion _function appl_ied to a pe_rspective camera whose K;lq - 1 qxR |0
undistorted image plane igont (cf. Fig. 3). 4 0
Note that this parameterization only accounts for viewing
cones with field of view smaller thab80°. Larger fields of
view can be modeled by adding a reflection to the rotationa®lds up to scale. If we divide the first by the second
component of the pos&®’ = diag(1,1,—1)R, and a corre- coordinates of both sides, we obtain an equation which is
sponding image planepack. Equivalently, one may describeindependent from the distortion circle
these cones as cameras with negative focal length as pedsent o (MQ)

We finally obtain a linear equation on the six coefficients in
the first two rows of the pose matriM

0
I -t Q 9)
0
M

(10)

D. Overview of the approaches

We briefly describe our two calibration approaches in terms a1 (M21Q1 + M@z + M23Q3) —
of the concepts previously introduced in this section. Both g2 (M11Q1 + M12Q2 + M13Q3) = 0. (11)

proceed in two steps. In the homography based algorlthme above equation being linear homogeneous, we may use all

(r|1ext s_e(}gors), t?e Oft('jcal axrl]s for eacft1 V]Lew of the_&?g?:_rpoint correspondences between the calibration plane and th
plane ItS rl]rs_ es |maed ’ e?(t:h one updo tour p?fsr'] NHEE ‘ image to estimate the first two rows b, up to scale. Until
correct choice Is made at the second step, which ConsIStS, @ty g algorithm is very similar to [12], but the followgin
simultaneously estimating the position of the camera on t Rrers significantly. The pose,e. R andt, can be partially

optical axis for all views and the opening angle (equivzaljentesﬁmated frorM. There exists a scalar such that
the focal length) of all the cones. The second approach idbas

on above introduced geometric constraints, although atty {Rll Rip —rit —\M (12)
some algebraic manipulations are required to avoid artikera Roi Rop —rjt ’

solution. We discuss two solutions for estimating the pdse QnererT is theith row of R and M the upper2 x 3 part of
the camera for each view, using the calibration conics. Th Thisl leads to the following observations:

the opening angles of the cones are estimated by re-fittimg th” ]

calibration conics using a parameterization enforcingfithte ¢ the fotation matrixR can be estimated up_to 4 solu-
be consistent with the pose of the camera. tions, from the left2 x 2 part of M. They differ by a
choice of sign for columns and rows of the solution:

if R is one correct solution, then the other three are

I1l. HOMOGRAPHY-BASED CALIBRATION given by DR, RD, DRD, with D = diag(—1,—1,1).
Distinguishing the valid rotation matrix will be done later
A. Unconstrained approach when estimating the full camera position and internal

parameters;
« the intersectionty between the optical axis of the camera
and the calibration plane can be recovered as the right
nullspace ofM, since it is the point on the plane pro-
jecting onto the distortion center (the origin). Hence, the
translation vectot can be estimated up to one degree of
freedom, a displacemenpt along the optical axis

In [24], an approach based on recovering thnage of the
Absolute Conicassociated to each distortion circle, from one
or many images of a calibration plane, is introduced. Once
the internal parameters are recovered, the camera external
parameters are estimated using the approach presented],in [1
[21], [31]. The weakness of this approach is that since the
calibration is individually performed on each distortiarcte,
it does not enforce SVP or NSVP constraints. However, it t =to + urs. (23)
is useful for estimating the distortion center as descrilmed

Section V. This algorithm will be referred td AC’, Estimating, can be done simultaneously with estimating the

focal lengths of all distortion circles. By inserting thdigmn
for t into (9), we obtain

B. Constrained approach fa

10
x R{0 1 —to—pur .
We present another homography-based approach that can d Ja 1 0 0 0 mrs) Q

enforce the constraints directly. It is related to Hartksng's )
approach, but it also handles non-central omnidirectioaai- Du€ to the orthonormality oR, we get

eras. f 5 1 0 0
q X fa RI0 1 —to| — 0 Q
1As mentioned in the introduction, this model does not inelua skew 1 0 0 U

between pixel axes or an aspect ratio different fronAlso, it assumes that
the distortion center is at the principal point. To



TARDIF et al: CALIBRATION OF CAMERAS WITH RADIALLY SYMMETRIC DISTORTION 6

Let us denoteS = RT,Q which is a known vector. We thus| INPUT. Dense or Sparse plane-image correspondences

can write the above equation as ALGORITHM:
£15 S fa For each calltiratlon. plane
q f4So - S fa (14a) « EstimateM, using (11) and all the correspondences.
Ss — uQs Qs| \S3/Q3 — « Obtain the rotatiorR, up to 4 solutions using (12).

« Obtaintg, as the right nullspace dfl,,

d obtain the followi t of li ti th . . .
and obiain the foflowing set ot finear equations on the The four possible optical axes are given by (13).

unknownsf, and 1. « DisambiguateR, and optical axis by estimatingd :
S1 Jd f4 and y, using (14c)
[a] Sa fa =0 (14b) | DENSE CORRESPONDENCES:
—Q3] \pn—53/Qs « Simultaneously estimatéd : f; andVv : u,, combin-
or ing (14c) for each view.
q352 q2Q3 f 253 SPARSE CORRESPONDENCES:
351 n1Qs3 ( > =|aSs|. (14c) « Apply the previous step replacingy by a polynomial.
@152 —@S1 0 0

Perform iterative refinement of the reprojection error.

Note that the equation system is non-homogenebesthe
solution for thefd and u is computed exactly, not only up Fig. 4. Complete algorithm for théiB calibration approach for an SVP
to scale. Also note that the third equation is useless: in tRE"e"®

absence of noise, the terqaSs — ¢2.51 is zero and gives no
constraint ory,. With noise however, the third equation admitgseq to estimate linearly the first two rows of the pose matrix
random coefficients and using it was found to bfagowards 1, using all point correspondences, for all distortion @iscl
smalll va!ues. We thus only use the first two equations of (148he pose parameteR, andt, can also be extracted in the
All point correspondences, from all distortion circlesncaggme manner, with, being obtained up to a displacement
be used simultaneously: each correspondence contribute%ﬂbng the optical axis,s.
estimatingy and to the focal length of the distortion circle \we now consider how to estimate the focal lengthsand
it belongs to. Hence, overall we have a linear system of sigg optical center positions, +t,. The equations are identical
2n x (D+1), wheren is the number of point correspondenceg, those in the SVP case, with the difference thathas to
and D the number of distortion circles. _ be replaced by, + t4, i.e. is not the same for all distortion
This assumed a known rotation. All rotation matrices amongcles. The set ofi, andt, is an overparameterization, since
the four pOSSIbI|It!eS showln above, give the same s_olutmrn fsubtracting a value from alk, and adding it to alk, leaves
fa andpu, up to different signs. Letly be distortion circle of (15) unchanged. Hence, we may set one of them to any fixed
smallest radius. Then the correction rotation is the oné& Wi{,5|ue. The equation system is thus of sizex (2D — 1+ V).
positive f4, and . o Polynomial model. Calibrating a general model requires
Usmg_ many images of_ a ca_llbratlon p_Igne- The ab_ove many data points to obtain precise and accurate results, i.e
equations can be used in a slightly modified form to simultgs avoid over-fitting. Otherwise, relying on a more resgitt
neously use many images. Letbe '_[he index for each view ,qqel may give better results. In [25], [26], [29], a polyriain
out of V. Each associate?l x 3 partial homographyl, can mogel was used to represent the relationship between focal
be computed using (11). Then, andR, can be estimated |ength and radiusi. Our formulation can also be trivially
individually from each of them. Flnall)_/, (14c) is extend(_aqinodiﬁed to use polynomials fof,; as well asty. For NSVP
naturally to account for many views by simultaneously S®vi cameras, it turns out that in practice, estimating the fully
for all displacementg., and focal lengthsfy. The resulting  general model can be unstable because of the focal length—
equation system is of sizen x (D + V). . displacement ambiguity mentioned in Section 1I-B. The lesu
NSVP case, many views.In the NSVP case, the previousig that hoth f, and t, are not smooth functions for small
algorithm can be applied nearly without modification. Let Uggjys values!. Instead of relying on smoothing terms (whose
consider the form of the plane-to-image homography for geights are difficult to set) to circumvents this, we prefging
individual distortion circle, given in equation (8), fordiNSVP polynomials.
case. In comparison to the SVP case (equation (9)), there isrne apove method is summarized in Fig. 4 and referred to
an additional ternt, for the position of the displaced opticalyg 448~ in the following. In practice, this is the most accurate

center on the optical axis: and flexible of the approaches presented here (see Sectipn VI

g x H,uQ=KgiR, —(two + (o + ta)rez) | Q IV. GEOMETRIC APPROACH

OO =
o~ O

A. Solving the Calibration and the Pose

= Ka (RyToo — diag(0,0, v +1a)) Q. (15) In the following, we present a second approach based on the
Note thatt, is the same for all views. Sind€; is a diagonal geometric constraints discussed in Section Il. We first psep
matrix, the first two coordinates of the right hand side do nat naive calibration approach; it is not optimal though and a
depend onu, andt,. Hence, like in the SVP case, (11) can béetter one will be discussed in the next section. Recall the
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constraints relating calibration conics, viewpoint cenend displacement,; along theX-axis:
position of the camera illustrated in Fig. 2. In the SVP case,
one ea_S|Iy deduce_s a calibration glgonthm cor_1$|st|_ng Bt fir ey x 0 by 0 . (16)
estimating the optical center (relative to the calibratidene) 2

. . . . . *adkd 0 Qaq kd —1
as the 3D point which is closest on average to all viewpoint . o
conics (see below). Then, (7) can be used to compute thee parametera,, b, andk, can be estimated much like in
focal lengths for all distortion circles. In the NSVP case, & C|aSS|C6_1| conic fitting algo_nthrr_]. We perf_orm aII_ subsegue
possibility would be to compute the optical axis: the lihe Computations with those axis-aligned conics. This paramet
that minimizes the sum of squared distances to the viewpoia@tion guarantees that all viewpoint conics lie in the same
conics. However, this is not very accurate as discussedvbel®lane ¢ = 0), in which they can be expressed as

Qq 0 —aq k’d

SVP case: Computing the closest point to the viewpoint agbg 0 —ag by kg

conics. This is the original approach presented in [24]. ¥, 0 ba (ag — bg) 0

Computing the orthogonal distance of a point to a general —agbakq 0 agba k3 + aq — ba
conic requires solving a fourth degree polynomial [30].rdsi a7

this to compute the closest point to our set of viewpoint ceni However, this parameterization does not guarantee otlogr pr
is not very practical. Instead, we iteratively minimize astco erties given in Section 1I-B, especially that these viewpoi
function subject to constraints. The closest pajnis found conics all touch in a single point. To achieve this, we state

by solving a new result. For a central radially symmetric camera, the
intersections of all its viewing cones with the calibratjgane
minz dist(q,qq)?, subject toq) ¥yqq = 0, are calibration conics$, given by
q,qd
¢ v pa 0 epay +
2 2
i.e. we also estimate one point per conig; that will, after €d X 0 0% (2pa +1) 0 , (18)

2 _
convergence, be the orthogonal projectiongobn ¥,. Since pay +7 0 pa€” +2¢ =2

the function and constraints are polynomial, this problemherevy, e andd encode the external parameters of the camera,
can be optimized using an algorithm relying on Cylindricaand p, is a parameter for the distortion circle of radilisFor
Algebraic Decomposition (CAD) which guarantees a globalach calibration coni€,, the corresponding viewpoint conic
minimum [18]. Such an algorithm is available through thés given by

Minimize function of Mathematica In this work, we present - 0 et L
another solution that gives much better result. Instead of 257 s pd
proceeding into two steps, we directly use the fitted catibna Uy x 0 T ey 0 . (19)

conics to estimate the camera position, as described below. 72+252(€;1)+52€2pd
v02pa

The derivation and the proof of this formulation are avd#ab
in [27]. Note that in practice, we are only interested in the
estimation of,;. Much like (7) can be obtained fdr;, we can

In our first experiments, we found the previous approacompute(f;/d)? for {,. After some algebraic manipulation
to be unstable, even though good results could be obtainedising that result (not shown here) we substifutén (18) with
some cases [24]. This is because the formulation has several by 1
drawbacks. First, although CAD optimization is algoritlemi Pd = —m —
it becomes computationally intractable when the number of v
viewpoint conics increases. Secondly, it appears thatrfindiwhere ¢, is chosen so to be equal {g,/d)>.
the closest point to the set of the recovered viewpoint eonic The formulas for estimating the external parameters of the
is not the optimal criterion. As discussed above and showngamera are summarized in Table Il and briefly derived below.
Fig. 5, when the noise is large, the shape and position of thBe position of the camera is obtained by solving
viewpoint conics may become very perturped. _ (X, Z,1) W (X, Z, 1)T —(X,2,1) ¥, (X, Z, 1)T

For an SVP camera, a better formulation would directly
enforce that the viewpoint conics all touch in one locatiod a for (i # j). The value—< gives the X-coordinate of the
have the same tangent at this point. Then, CAD optimizatidftersection point of the optical axis with the calibratjpiane.
could be avoided. Before giving our solution, we come back todeed, we can verify that
our calibration conics. As mentioned above, they share &n ax . T _
(in the absence of noise). We assume that their common axis vd:(=¢/,0,)¥a (X, 2,1)" =0,
can be estimated with high accuracy despite noise in the dathere ¥, (X, Z, 1)T is the tangent to the viewpoint conic
due to using many calibration conics. Once the conics’ axad the optical centeri.e. the optical axis. One may won-
is estimated, it is convenient to change the coordinatesystder why the extrinsics were not directly “encoded” in the
of the calibration plane such that the conics are aligneti wiparameterization. Indeed, such parameterizations exidt a
the X-axis. Then, each one of them can be parameterized Wgre investigated. However, they were abandoned becaese th
its major and minor axis lengthls; and a4, as well as by a resulting calibration conic§; were not as “simple” as the one

1
€+E 0

B. A formulation enforcing the constraints directly

(20)
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Fig. 5. The effect on viewpoint conics of errors on the calilan conics (shown in the same plane for visualizatiga).Original configuration with the
optical center(b) Added noise to the calibration conics and resulting viewpobnics. Obviously, finding the closest point to these esmwill yield a large
error. (¢) Recovered optical center in dark/blue and corrected cagii@n by our approachcf. Section IV-B.

TABLE I

where 1, is the mean. The expressiert is a fourth degree
COMPUTING THE EXTERNAL PARAMETERS OF THE CAMERA FROM

polynomial ind?, i.e. it admits only three extrema if?. One

THE PARAMETERS . .
of them corresponds = 0 and is a maximum, and the two

Information Formula L . . .
X-coordinate of the optical center —L _c42 others are minima with identical absolute value but opposit
s vy ; i i

ign. The one larger than zero i r solution n n
Z-coordinate of the optical center f\/f"’Q 54252 Slg E Ot ek arge t.t.a g.o S (t)fl: S0 lIJt ondérands Cat. t
Intersection of optical axis and calibration plane  —¢/v always be taxken posi “{e' ven ~|S value, we can e~S imate
Intersection of calibration plane and principgly = (2 — €)/v the other parameters with= Mean(é;) and~y = =Mean(7,)
plané (setting ¢4 = 0) using (22) and (23). This sign ambiguity will be resolvectat
! The principal plane refers to the plane passing through ghiea In the presence of noise, we perform a final optimization:
center and being parallel to the image plane.

. ~\2 ~ \2
argmin » (e — &)” + (v — Ja) (25)
3,6,y P

we propose. When a calibration algorithm could be deducading a standard Gauss-Newton algorithm.
from any of these formulations, it was less stable than thee on Once the external parameters of the camera are known, that
we show next. is, the value ofd, ¢ and~, we are seeking the intrinsics;.
With this global formulation, all calibration coniég should Using (21) did not give satisfying results in practice. &,
be fitted a the same time. However, this task is difficult sinage find £, that best fits the original data points. Given the
the function is non-linear and requires an initial estimake external parameters, each calibration conic can be fitted us
the parameters. a least square algebraic error function resulting in a sgcon
Perhaps surprisingly, there exists an analytic solution #egree polynomial involving the variabfg. We try both signs
computing the extrinsics parameters once the values; @f;  for v and keep the one that best fits the calibration conics.
andk, for all calibration conics are estimated. The position aflany calibration planes. If many calibration planes are
the camera can be estimated, while ignoring the focal lengifailable, the focal length of each circle must be consisten
at each circle. We exploit the fact that without noi&&: 4 = over all the views. This is accomplished by simultaneously
€4, 1.e. that the unconstrained and constrained formulatidgiiting the calibration conics, for different planes. This global
should give identical resufsWe solve this equation for eachinear Least Square problem is a second degree polynomial

parametek, v and ¢, and obtain where¢, is the only variable.
b = 207120710y (bg — ag) — 1 1) The steps of this algorithm are summarized in Fig. 6. In
d the following, it is referred to as the Right Cone Constraint
Ga=—a;"’\/y? +ag—vka+ 1 (22) method, RCC".
Fa = £5b; 1 \/aqg\/62 + 2bg, (23)

L . ~ C. NSVP extension
for each calibration conic. Note that the two last equations

involve only the extrinsics parameters. We rename them wi O\;JFC gj;'?;lsafkv ; ?222' |(t: ?Q nt:f[ c?eesncerirl?(lalzer?eiloglljr:gtez?s
a~ and ad subscript because, in the presence of noise, thg ' pace, :

are different for each calibration conic. This is becausshea monstrated that such a parameterization is not that lusefu
S . I : . in practice. Indeed, the parameters can only be recovered by

calibration conic is fitted individually. Therefore, an iesite o LT )

for & can be obtained by minimizing the variance of e In means of optimization that would require initial estimatés

our implementation, a minimization ovéf is prefered, since the parameters, which are difficult to obtain.

it eliminates the square root in the expression. This resolt
solving V. COMPUTING THE DISTORTION CENTER

. - Until now, we have assumed, for both algorithms, that the
5% = 2 and o= — A42)2 . X ' v x '
Arg Lo, 7 Z(“ Ya) (24) distortion center was known; this information was used to
select the distortion circles. Recall that the distortienter is
2\We scales; andé, such that they have unity at the upper-left coordinatealSo the principal point of the camera in our model. Testé wit

d
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INPUT: Dense plane—image correspondences
ALGORITHM:
For each calibration plane:
« Estimate individually every calibration conig;.
« Compute the average major axis and select a point o
denotedg, on the axis. (@) 3.5mm
« Change the coordinate system of the original data to
setm on the X -axis andg at the origin.

x
10 20 30 40 50 60

(b) cata-12mm

30 2
I3

15
2
15 10
10

s
5

ine
o 20 30 4 5 6 o 2 %

a 0 ¢
« Estimate the new, of the form: «< [0 » 0
c 0 d e %
« Solve (24) to obtairn,. (d) 3.5mm () cata-12mm (f) 8mm
« Minimize (25) and obtaire,, . Fig. 7. Plots of the goodness measure for the distortioneceabtained for

: : : : three tested lensesf( Section VII). (a,c,e)60 x 60 grid around the image
CompUte_’ for ,a” dISFortlon circles, ¢ USI!’]g (18)' center (yellow/dark meaning smalle(p,d,f) One slice per plot, through the
Perform iterative refinement of the reprojection error. respective minimum.

Fig. 6. Complete algorithm for thBCC calibration approach.

camera. This formulation is also used in [9], [28], [29]. Our

noiseless simulated data showed that the calibration may dséerion is different from the one in image-based distorti
quite sensitive to a bad choice of distortion center; indékel  functions, where the distortion center (together with trstod-
for real cameras, using the image center as an approximatiom function) is chosen to maximize the linearity of reeiifi
was not satisfying in general. Hence, the distortion centtne images [8], [12], [25], [31]. However, the latter carsuét
must be estimated as part of the calibration process. Ndinenstability for the estimation under very low distortiamd,
that using Hartley-Kang's algorithm is not satisfactory inmore importantly, is not optimal when the camera is NSVP
general since the criteria for choosing this point is in rnsince image rectification is not possible. In theory, ounsds
of image rectification. Besides not being applicable to nosubject to these problems even when no distortion is present
central cameras, these criteria do not correspond to ouemod his is confirmed by the nice shape of the error function
Below, we propose one where the recovered distortion center the 8.0mm camera as show in Fig. 7. For these reasons,
is identical to the principal point. The sensitivity of datation the distortion center computation will not be included i th
we observed in simulations suggests that it should be dessibomparison with Hartley-Kang’s approach.
to estimate the distortion center rather reliably, whichswa
confirmed in practice.
Algorithm.  We used the following heuristics to define an VI. PRACTICAL |SSUES
optimization criterion for the distortion center. Let upapthe
| AC approach of Se(_:tion_ [I-A with sevgral image_s as_inpuh_ Dense Plane—Image Correspondences
The plane-based calibration for each distortion circlehisnt
capable of estimating a principal point, besides the famagth  The easiest approach we found to get dense correspondences
fa. It seems plausible that the better the assumed distortipgtween the calibration plane and the camera is to use a flat
center was, the closer the estimated principal points weiltdd screen. We used a simple coded structured light algoriti& [1
it. Since plane-based calibration is applied on imagesecedt which consists in displaying a sequence of patterns of baoriz
on the assumed distortion center, we can consider the avergg and vertical black and white stripes of varying thicknes
distance of the estimated principal points (one per distort the screen to encode the position of each screen pikeF{(g.
circle) as a measure for the goodness of the center. 8). Then, for each camera pixel, we identify the correspogdi

Figure 7 shows the values of this measure, computed fowsition on the calibration plane by decoding the observed
distortion center positions on &0 x 60 grid around the intensities in each pattern. We found that, when performed
image center, for real cameras. The shape of the cost surface controlled environment (low-constant ambient lightin
indicates that we can find the optimum distortion centergisiscreen of high contrast and resolution), the accuracy df auc
a simple steepest descent type method. We implemented sp@thod is good enough for calibration. Indeed, we only used
an approach that accurately finds the distortion centerinvithcorrespondences of pixel precision (see [23] for detdils)ce
a couple of minutes of computation. Note that the secotige points located on the distortion circles are given intiitga
column of Fig. 7 shows that, although the principal poinfsoint coordinates, we compute their correspondences by a
used to plot it were computed individually per distortiorcé, weighted sum of the correspondences recovered for the four
they are very densely clustered (average distance to agsumiesest image pixels. Besides allowing dense correspaeden
distortion center of less than 3 pixels). This suggests & higith the calibration plane, these approaches render lttive
stability of the calibration. problem of recovering the structure of the calibration plan
Discussion. Compared to other approaches, our optimizatiohhis is as opposed to using calibration grid images whek gri
criterion is chosen to find the best optical axis. Thus, thmints must be automatically extracted and identified. Téis
distortion center is identical to a principal point in a pitd especially difficult when the distortion is very large.
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tortion®. The focal length (and distortion) function of each type
of camera was built randomly via monotonically decreasing
polynomials of fifth degree. We used an image size comparable
to our own camera: 1 Mega pixel (see real data). The shapes of
focal length functions of the wide-angle cameras were simil
to our 15mm (Fig. 14) and we usef with f; = 1000 & 200
, _ _ , pixels. The simulated fisheyes were analogous to our 3.5mm,
Fig. 8. Projected patterns for correspondences are haaizand vertical .
black and white stripes. Images taken wi{t) the Goyo 3.5mm(b) cata- so we usedfy = 400 + 100 pixels and the shape of the focal
dioptric, and(c) paracatadioptric camera (cata-12mm). length function yielded a field of view close 1&0°. In these
tests, we assumed a known distortion center and also made
o sure the camera was never placed in a near fronto-parallel
B. Omnidirectional Cameras position w.r.t. the calibration plane.

There are several issues worth mentioning for omnidirec-We compared the reprojection error, the error on the pose
tional cameras. If the field of view is larger thai80°, and on the calibration. We define the latter as the average
then some distortion circles will have viewing cones thatifference between the recovered focal length funcfigand
actually approach planes. For tREC approach, this meansthe ground truth. Our tests showed that all of them are highly
that fitting the calibration conic may become unstable. €heeelated, so we only show results for the reprojection efrbe
cases can be detected as the ones whose correspondencespoojection errors for the three algorithms w.r.t. noisel a
the calibration plane are close to collinear. In practibeyt the number of used cameras are shown in Fig. 9. We added
are discarded from the actual calibration procedure. In ti&aussian noise of standard deviation up to 4 pixels to the
case of the homography-based algorithm that uses all matchaginal data, which consisted of 50 points per distortionle

(b)

simultaneously, no special attention is needed. (which is rather small compared to the several hundred lysual
available from a structured light dense mapping). In all our
C. Non-linear optimization tests, data on the distortion circles are not necessarénlgv

Becausef, is a function of the radius in the distorted image‘,jiStribUted' _Especially _in the case 9f very large field (_)Wie_
it is not straightforward to perform the projection of a 30mo only a portlondof the image ef[eCt_'Velil seeﬁ_ thif cal|br_at|(|)|n
into the image (as opposed to the backprojection of ima%g‘me' We made Slf”e todproperyésgnu ?jtelé IS € ect. fna
points to 3D). This means that (8) can not be used directly yir tests were performe using s, /-an VIEWS.
perform a non-linear optimization of the calibration unims. !N 9eneral, all three algorithms performed similarly. The
Since the focal length function can not be inverted when fCC Obtains results for the wide-angle camera similar to the
crosses zero, it is preferable to define the distortion imseof other two. However, this is not the case for the fisheye camera

view angled,;. As seen in Fig. 14(b), this function is generall)pecagse the dqta points were not unlformly d|st.r|buted fadlou
simple, so easily invertible. Given this function, the taof the dlstort_lon circles. Hence, the pose_estlmatlon was Bot a
the image of a 3D point is computed from the angle betwe§fP!€- This exposes a weakness of this approach: if the pose
the optical axis and the line spanned by the optical center a3" ON€ View is badly estimated, it can potentially destriog t

the 3D point. The non-linear optimization is then performeﬁStlrnatlon of the focal length function even using many wew

with 6, instead off;. The NSVP case can not be handled a-ghis gﬁegt is npt as impprtant for th_ﬂ_B since the focal length
simply, since there is no single optical center relative oo function is estimated with the position of the camera on the

to compute the anglé. In this case, we use (8) and estimat@Ptical axis using all the views. _

a radiusd; associated to each 3D—2D correspondence, aloNg VP cameras. We performed an in-depth analysis of the
with the other parameters. This yields a sparse non-linedr-p PErformance of our algorithms for NSVP cameras. Three
lem. We also enforce monotonicity g andd,. For example aspects were considered. First, how well the displacement

this can be done approximatively by adding terms to the C&QP”Q the optical axis can be recove_red undgr noisg. Second,
function, of the form:(|fa — fass| — (fa — far ))z s >0 s the linear NSVP algorithm useful in practice? Third, does

which is a quadratic penalty if the constraints are not exggy 1€ NSVP model overfit when the camera is actually SVP?
but gives0 otherwise. We performed our tests using the homography based approach
because it is the only one that naturally enforces both S\P an
VIl. EXPERIMENTS NSVP constraints. Two approaches were tested:

4J Initialization using linear calibration based on an SVP

We tested our approaches using different types of camer , , Nt
assumption, followed by non-linear optimization of the

with simulated and real data. They were also compared to

Hartley-Kang’s algorithm [12] (referred to addK”). Since NSVP mpdel. o _
the view angle of some of our camera is larger thaoe, we 2) Initialization as well as optimization using the NSVP
implement the algorithm for a spherical retina. model.

The tests were performed on simulated SVP and NSVP cata-
A. Simulation dioptric cameras with viewpoints moving along the opticasa

Svp Ca_meras' We _S'mu_lated_ two typ_eS of cam_eras: W|d¢' 3We did not compare catadioptric cameras with Hi€approach because
angle with small radial distortion and fisheyes with large-di the comparison would have been unfair.
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Fig. 9. Reprojection errors (in pixel) for the simulatedtle-angleand fisheyecameras.

. . iy TABLE Il
(Fig. 10(a,d)). We used 10 different positions for the pland
COMPARISON OF THE AVERAGE REPROJECTION ERRORSBIL REFERS TO

added Gaussian noise of standard deviation 1 pixel to ttee dat

. . NON-LINEAR OPTIMIZATION.
Beyond this noise level, we found that our approach could not

accurately estimate the viewpoint displacement. Threeliath Algorithms
points per image were used and polynomial models of degree Ctanl‘ezras ‘F:%% RCICZ?L lHZBS HE;’;“— 1H0Kz H'é+9'\éL
H . . . cata-1Zmm . . . . . .
5 for the callpratlon were u_sed. A typ_lcal behavior of the two cata-30mm Il — R ey IR e B
approaches is shown in Fig. 10. This leads to the following 3.5mm 6.89| 1.15 |1.46| 1.06 | 2.53| 1.16
observations: 8mm 10.74| 3.01 |6.64| 3.08 |10.92| 3.10
Canon 15mm| 0.56| 0.48 |0.51| 0.48 | 0.51| 0.48

o For an SVP camera, both optimizations should lead to
similar results (negligible NSVP);

« For an NSVP camera, enforcing an SVP yields a biased
focal length functiongf. Fig. 10(f)). In some cases, this
can be satisfying in terms of reprojection error, like for
one of our real camerasf( Fig. 13);

« When the model is refined to includg, the optimization
might not converge to a satisfying minimum;

« If the camera is NSVP, the second approach should
perform better, but only if the noise is sufficiently low
(cf. Fig. 10(d)). Otherwise it can result in worse reSUI'[IEig. 11. Image rectification for the Basler camera with thesffin lens and

because solving with (15) is not as stable as with (9). the RemoteReality lens (cata-12mrtg) Original image.(b) Rectified image
for a rotated view.

(b)

B. Real data

Several camera configurations were tested. First, a CCTve cameras could be calibrated from a single image of the
Basler A201bc was combined with a fisheye Goyo 3.5metreen ¢f. Fig. 12 for the RCC), although in general, we
lens, to an 8mm Cosmicar lens with small distortion and t@commend using at least five images for good stability. Reca
a RemoteReality catadioptric lens combined with a 12.5mtihat our structured light based matching provides a large
Cosmicar lens (referred to as “cata-12mm”). Secondly, rmimber of correspondences. The cata-12mm was calibrated
Canon SLR was combined with a fisheye 15mm lens and tovéh all the approaches (except for Hartley-Kang'’s apphoac
0-360 catadioptric lens combined with a 30mm lens (referrechere only the portion of the image corresponding to forward
to as “cata-30mm”). In all cases, the calibration plane a@bnes was used) with very similar result. ( Fig. 14). As
known Euclidean structure was a 20 inch LCD screen. Ther the cata-30mm, since it was found to be non-central, as
number of calibration views was between 8 and 10 for thiescribed later in this section. THRCC gave very accurate
different experiments. results, however only with a limited number of planes. The

Figure 14(a) gives the computed focal length of the 15mrdifficulties arose when not enough data were available twall
3.5mm, cata-12mm and cata-30mm, w.r.t. the distahiwethe a good fitting of the calibration conics. We handled this by
distortion center, using all methods. These are the funstiodropping these planes and use only the other ones.
that were recovered without further optimization basedran t If discrete values forf; are computed, instead of e.g. a
reprojection error. Table Il shows the average reprogecti polynomial function, then only a subset of distortion ai<l
errors of the three algorithms for all cameras. In many casese used for calibration; others can then be extrapolated or
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Fig. 10. The two optimization algorithms (see text for dejawith simulated data(a)+(d) The recovered displacemety. (b)+(e) The error distribution.
(c)+(f) The focal length functions compared to the ground truth.
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Fig. 12. Calibration with théRCC approach(a) Fitted ellipses for the Goyo 3.5mm lens aftj Corresponding hyperbolas, computed intersection andaipti
axis (gray line).(c) For the cata-12mm camera, the intersection between therai@din plane and the cones yielded ellipses and hyperbotestraining the
viewpoint to lie respectively on hyperbolas and ellipsgh. Intersection of the viewpoint conics.
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TABLE IV
COMPARISON OF THE AVERAGE REPROJECTION ERROR FOR DIFFERENT
CONSTRAINTS ON THE VIEWPOINT’'L’ REFERS TO THE LINEAR
ALGORITHMS AND 'NL’ TO NON-LINEAR OPTIMIZATION OF THE

interpolated from a polynomial fitting of the data. Let us

define this polynomiap; from the camera model, it is best to

ensure that its derivative at 0 (corresponding to the distor

center) is 0. This constraint is due to the symmetry of the

distortion model. Another criterion is that the functiorosid

be monotonically decreasing. This last constraint is nietady Algorithms-Constraints

enforced in our algorithms. However, this did not seem t0 cameras || svp-L | svP-NL Ng\\//s Sfier NSVP-L | NSVP-NL

be an issue in our_te_sts. In practice, polynomials of (_jegr_ee S omml 165 T 108 106 158 115

appeared to be sufficient. To handle the case of omnidireadtio | cata-3omm|| 2.22 | 1.93 1.73 1.42 1.33

cameras more appropriately, the interpolation is carriatl o

with the view angle instead of the focal length. In this case,

a monotonically increasing polynomial passing through © ca

also be fitted (see Fig. 14(b)). Using a translation stage, the camera was moved to three
Both catadioptric cameras cata-12mm and cata-30mm &@sitions with known relative motion (no rotation, known

typical examples of configurations yielding multiple viewiranslation). Using the calibration information (obtainesing

points. Indeed, both mirrors are parabolic and the mountether images), the pose of the camera relative to the ctibbra

lenses are perspective [22]. However, only the second ose W#ane was computed for all three positions. From this, the

found to be NSVP &. Fig. 13 and Table IV). We conjecturerelative motions were computed and compared to the ground

that although our 12.5mm camera is not orthographic, it hadrdth. The results presented in Table V show a good stability

field of view sufficiently small to provide a locus of viewpesn for all methods.

very close to a single effective viewpoint. To verify our Images from three panoramic cameras were rectified based

hypothesis, it would be useful to perform the test with moren the calibration resultscf, Fig. 16 and 11(a,b)). For the

specialized equipment like in [22]. wide-angle Goyo lens and the cata-12mm, the results seem to
Evaluating the results based on the reprojection error cBfi very good, even towards the image bordefs {ig. 16(b)

lead to biased conclusions in the case of a generic modRld the inset images in 11(b)).

Indeed, the model offers more freedom which allows to fit Finally, a home-made catadioptric device built from a Fu-

the data better. Meaningful quantitative results wereiobth jinon 12.5mm lens pointed at a roughly spherical mirror was

for the Goyo 3.5mm lens, using a pose estimation procedurested ¢f. Fig. 15). Although its radial configuration was not

PARAMETERS
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Fig. 13. The two optimization algorithms (see text for de)awith our catadioptric camera&)+(d) The recovered displacemety, (b)+(e) The distribution

of reprojection errors(c)+(f) The recovered focal length functions.

Fig. 16.
Small inset images show rectification of the border regions.

TABLE V
RESULT FOR POSE ESTIMATIONTHE CAMERA WAS MOVED TO THREE
POSITIONS WITH KNOWN RELATIVE MOTION. COEFFICIENTSpij AND a;;
DENOTE THE DISTANCE(IN CENTIMETERS) AND RELATIVE ANGLE (IN
DEGREES BETWEEN CAMERA POSITIONS AND j.

©

Image rectification(a) Original images.(b) Rectified image for the Goyo 3.5mnfc) Rectified image for the home-made catadioptric camera.

VIIl. SUMMARY AND CONCLUSION

We have proposed new calibration approaches for a camera
model that may be a good compromise between flexibility
and stability for many camera types, especially wide-angle
ones. Previous work showed that tREC approach might

have a limited practical usability because of stabilityuess

[24]. This was because only one calibration plane could be

Position Angle
Algorithms Po1 P12 Po2 ap1 a12 ap2
Ground truth 5 5 10 0° 0° 0°
RCC 4.94 5.00 9.93 0.83° 0.1° 0.92°
HB 4.90 4.94 9.85 0.79° 0.79° 1.6°
HK 4.90 4.96 9.86 0.84° 0.68° 1.51°

used directly and because camera position was recovered in
two steps: conic fitting and finding the closest point to a

set of viewpoint conics. Both issues were addressed in this

paper and we showed that the use of RE€C approach is
very well suited when performed with only few camera poses.
However, our homography-based approach introduced in this

perfect, the distortion center could be found and a satigfyi paper is preferable. It can be adapted to using a polynomial

calibration could be obtained with our methods. ThHéB*

distortion model and extended to NSVP configurations. This

approach gave the best results because it could take adeantdlows to perform calibration without a dense plane-togma

of up to eight images, which is more robust to the imperfeatatching, unlike the previous approach. Those reasons, and
configuration of the camera. The rectification is surprisingthe fact it was the most reliable in our experiments, lead us
good for a large part of the image, especially around the recommend théiB approach oveRCC.

borders ¢f.

Fig. 16(a,c)). The remaining distortions in the Hartley-Kang’s approach gives very good results with the

center were found to be caused by a small bump on thenefit that it has an elegant solution for the distortionteen

“mirror’'s” surface.

estimation. Our approach gives a similar accuracy, but tsm a
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Fig. 14. -(a) Recovered focal length (in pixels) for the three aIgorithmilS]
(after polynomial fitting of the dataYb) Recovered view angle (in degrees).
These calibration curves were obtained without optimizatbased on the
reprojection error. Performing such an optimization leagdry similar results
in general. Observe that for the catadioptric cameras thexenegative focal
lengths, meaning that their view angle is larger ti&0°.

[16]
[17]

(28]

iy

[29]

[20]

[21]
Fig. 15. Home-made catadioptric camera built from a Bas@®¥oc camera
with a Fujinon 12.5mm lens pointed at a Christmas ornamepresenting a
roughly spherical mirror.

[22]

deal with NSVP cameras, which is one of the main goals g
this work.
[24]
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