
Direct Estimation of Rotation from TwoFrames via Epipolar Search ?S�ebastien Roy?? and Ingemar J. CoxNEC Research Institute4 Independence WayPrinceton, NJ 08540, U.S.A.Abstract. A direct method for estimating the rotational motion be-tween two image frames is developed. The algorithm does not requireknowledge of image correspondences, optical ow or scene structure andonly assumes approximate knowledge of the translational motion. Spatialand temporal intensity gradients are avoided, resulting in an algorithmthat is noise resistant. Moreover, the algorithm does not assume a partic-ular projection model and is valid for both orthographic and perspectivemodels.It is based on a statistical measure of epipolar misalignment. Speci�-cally, that (1) the intensity histograms of corresponding epipolar linesare invariant (ignoring occlusions) and, more importantly, that (2) thehistograms of \almost corresponding" epipolar lines are similar. This lat-ter property is a function of the spatial correlation present in the imageand it is empirically demonstrated to be well behaved over a large classof scenes. These epipolar properties of histograms, i.e. that the di�erencebetween two histograms is a minimum when the two epipolar lines trulycorrespond and (approximately) increases monotonically with the de-gree of misalignment between two \epipolar" lines, allows the rotationalmotion to be estimated in a straightforward manner as a 3-dimensional\epipolar search".Experimental results are presented on the SRI JISCT stereo database toempirically support the epipolar properties of intensity histograms. Thecalibrated NASA helicopter ight sequence is then analyzed to quantifythe accuracy with which the rotations can be estimated. Experimentalresults indicate that very precise rotational estimates can be achieved.1 IntroductionThe problem of estimating the ego-motion and structure from two image frameshas long been studied in computer vision. The solution to this problem has utility? Published in 6th International Conference on Computer Analysis of Images andPatterns, Prague, September 1995, (p. 880-887)?? Visiting from the Universit�e de Montr�eal, D�epartement d'informatique et derecherche op�erationnelle, C.P. 6128, Succ. Centre-Ville, Montr�eal, Qu�ebec, Canada,H3C 3J7



in many domains, especially for navigation and three-dimensional scene recon-struction. There are two distinct classes of structure-and-motion algorithms. The�rst is feature-based and assumes that there is a known number of feature corre-spondences between the two frames [7, 11, 12, 3]. While it has been shown thatvery few correspondences are needed in theory to solve the structure-and-motionproblem, in practice, these algorithms are very sensitive to noise and many morecorrespondences are needed to stabilize the solution. Unfortunately, it is oftenthe case that no feature correspondences are known a priori.This paper is concerned with the class of direct methods of motion-and-structure estimation in which explicit feature correspondences are not required.By using intensity derivatives and exploiting the brightness-change constraintequation, solutions for motion-and-structure are derived directly. Negahdaripourand Horn [8] and Horn and Weldon [6] develop algorithms for the special cases of(1) known depth, (2) pure rotation and (3) pure translation or known rotation,(4) a planar world. Hanna [4] describes an iterative, multi-resolution approachthat assumes piecewise planar (5�5) patches for the observed structure. Becausethe global minimization for ego-motion is non-linear, an initial estimate of therotation and translation is required. Subsequently, Hanna [5] extended this workby combining stereo and motion analysis to the estimation of scene structure.However, this work is quite di�erent from that proposed here, since the stereopair introduces a third image.This paper develops a direct method for determining the rotational ego-motion based on a search through the 3-dimensional rotational space. Such asearch is possible only if there exists image properties such that each hypothe-sized ego-motion can be evaluated relative to one another. Section 2 derives twoproperties of intensity histograms computed along assumed epipolar lines basedon the hypothesized three dimensional rotation. In Sect. 2.1, extensive experi-ments empirically show that the epipolar histogram properties are well behavedover the wide class of images contained in the SRI JISCT database. Generally,the statistical objective function has a clearly de�ned global minimum when theego-motion parameters are correctly assigned and is approximately monotoni-cally increasing with increasing error in the estimate of rotational motion.Section 3 describes experimental results of applying the algorithm to the cal-ibrated NASA helicopter ight sequence [10]. Quantitative comparison betweenthe estimated and calibrated rotational motions are presented for the case ofknown translational motion and then for the case of small errors in translation.2 Epipolar properties of intensity histogramsThe displacement due to camera motion of an image point P 0a in image A to apoint P 0b in image B can be decomposed in two components. The �rst componentMPa is the rotational part of the displacement while the second component EPais the epipolar vector, or translational part of the displacement. The relationbetween those components is expressed as P 0b = P 0a +MPa + eEPa ; (0 � e � 1),where e is the disparity along the epipolar vector. The rotational part MPa



is independent of depth while the translational displacement EPa shifts pointsalong the epipolar line by amounts that are inversely proportional to depth, asillustrated in Fig. 1.Property 1 (Epipolar Histogram Invariance)If we assume (1) the constant brightness constraint, i.e. the brightness of animaged point is unchanged by the motion of the camera, and (2) that the numberof occlusions is small, then it is clearly the case that the histograms of theintensities of two corresponding epipolar lines are identical since the two linescontain identical pixel intensities, only their position may be changed becauseof depth.Now consider the case in which the camera motion contains a small error,either on its rotational or translational component. As a consequence, the \epipo-lar" lines will be erroneous, but close to the true epipolar lines. Will the intensity
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Fig. 1. Epipolar errors for inaccurate translation (1) and rotation (2). True correspond-ing points are in the neighbourhood (dark grey region) of the true epipolar lines.histograms of two almost corresponding epipolar lines be identical?Property 2 (Epipolar Histogram Correlation)Assuming (1) constant brightness constraint, and (2) that the number of oc-clusions is small, then the intensity histograms of two \pseudo-epipolar" linesthat are spatially close to a pair of truly corresponding epipolar lines have sim-ilar (in a sum of squared errors sense) histograms. The di�erence between twopseudo-epipolar histograms is a minimum when the lines correspond to the trueepipolar geometry and increases approximately monotonically with the size ofthe rotational error.Property 2 is valid for a large class of spatial imagery, despite the fact thatit is straightforward to construct arti�cial images for which Property 2 does



not hold. In [1] Property 2 is proved for the case in which intensity values arespatially Normally distributed, a condition that is true for many natural scenes.Intuitively, Property 2 is a consequence of the high degree of spatial correla-tion [9] present in most images. As depicted in Fig. 1, small errors in the cameradisplacement cause a point P 0a in image A to be projected to a point which isspatially close to the true epipolar line EPa . The smaller the error, the closer thispoint is to EPa . Local image coherence then insures that the intensity value of anerroneous correspondence is close to the true intensity value that lies somewhereon the true epipolar line.It can be shown that translational error generally creates less displacementfrom the true epipolar line then rotational error. In the limit case for pointsat in�nity, the translational error has no e�ect whatsoever. That is, the rota-tional error is the dominant source of all point displacement and consequentlyof the sum of squared di�erences (SSD) between epipolar histograms. For trans-lational error only, the SSD between epipolar histograms is much weaker andother statistical measures of the epipolar line must be used. In this paper, wetherefore restrict ourselves to the case of unknown rotational motion and known(or approximately known) translation motion. It should be noted however, thatthe rotational motion so dominates the translational component that it maybe possible to correct for the rotational error in the presence of an unknowntranslation.2.1 Experimental veri�cation of Property 2We examined 23 stereo pairs from the SRI JISCT stereo database3. For di�erentranges of rotations (�20� around each axis) and known translation, a selectednumber of epipolar lines pairs were extracted according to the assumed ego-motion. The intensity histograms, ha(i) and hb(i), were then computed for eachpair of pseudo-epipolar lines and the sum of squared distances, sab, calculated,i.e. sab = P255i=0 jha(i)� hb(i)j . This error was then averaged over all pairs ofepipolar lines to arrive at a �nal similarity measure, Sab, Sab = 1N PNi=1 sab(i)where N is the number of epipolar line pairs extracted from the two images.Figure 2 show the average sum of squared errors, Sab, in the intensity his-tograms as a function of assumed rotational ego-motion about x, y and z axes4,for two representative images pairs from the JISCT database. The curves showa very well de�ned minimum when the pseudo-epipolar lines have the samerotational component as the true epipolar lines, i.e. the rotation is correctly es-timated. Moreover, the di�erence criterion, Sab, is approximately monotonicallyincreasing around a well de�ned minimum thus allowing in theory very rapiddetermination of the global minimum via gradient descent search.3 Although the JISCT database contains a total of 49 image pairs, many of these arerepetitious, with only very small motion di�erences between pairs.4 The x and y axes are assumed to be oriented with the horizontal and vertical axes ofthe image plane and the z axes is aligned with the optical axis of the camera system.
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Fig. 2. Histogram mean square error, Sab, as a function of rotation around x, y or zaxis. A) Plots of individual axis. B) Plot of two axis of rotation. Minima should be at0. All angles in degrees, spanning �20�.Note that the vertical axes for the three component rotations have di�erentscales. The e�ect is most pronounced for x rotations and least signi�cant for yrotations. This is caused by the small displacement of epipolar line induced bythe ambiguity of y-rotation and x-translation.Experiments suggest that this epipolar property of intensity histograms isquite robust to noise as well as being e�ective for both small and large imagedisplacement. Only 5 of the 23 images examined did not behave as expected andthese exhibited very strong deviations from the constant image brightness (CIB)assumption or contained uncommon periodic textures. However, the sensitivityto the CIB constraint is no more so than other direct and indirect methods.Moreover, when the CIB assumption was not valid, this could be corrected formany times, via a simple prepocessing step [2] to signi�cantly extend the ap-plicability of the algorithm. As with other techniques, the algorithm is sensitive



to images with a very small �eld of view since, under this condition, it becomesvery di�cult to di�erentiate between small rotations and translations. Finally,images that contained regular textures exhibited many strong local minima aswell as the expected strong global minimum which make gradient descent searchdi�cult. However, these images are not common and rarely occur in nature.3 Epipolar searchThe results of Sect. 2.1 indicate that the rotational components of the cameramotion can be determined by a 3D search for the minimum of the average sum ofsquared di�erences, Sab, provided that the initial rotational estimates are within�20� of their true values, which provides for large initial uncertainty.To evaluate this approach, we estimated the three component rotations be-tween every 9th frame of the calibrated NASA motion sequence. Each rota-tional component was searched in a range of �20� with a precision of �1�.The solution obtained was then re�ned by an additional search of �3� witha precision of �0:15�. The precision of the calibrated rotation on (x; y; z) is(�0:12�;�0:7�;�0:24�). Figure 3a shows the true and estimated rotations, whenthe translational error is zero. Very good quantitative agreement is achieved forall three axes of rotation. Figure 3b shows the true and estimated rotations,when the translational error is approximately 5�. Very good quantitative agree-ment is achieved for all three axes of rotation. To demonstrate how well-behavedthe histogram similarity function is, Fig. 3c shows the two dimensional contourplots around the selected minima for the pair of frames 36 and 45.4 Conclusion\Epipolar search", a new paradigm for determining the egomotion between twoframes, was proposed based on statistical properties calculated along \corre-sponding" epipolar lines. One such statistical property is the sum of squareddi�erences between intensity histograms calculated along epipolar lines. It wasempirically shown that this epipolar histogram measure is a minimum when theepipolar geometry is known exactly and increases monotonically with error inthe rotational components of egomotion. Intuitively, this is a consequence ofthe high degree of spatial correlation present in most images and can be the-oretically proven for certain statistical classes of scenes. The method does notassume any prior knowledge of the structure of the scene and is applicable toboth orthographic and projective imaging.This property of epipolar histograms allow the rotational motion to be es-timated in a straightforward manner as a 3-dimensional \epipolar search". Intheory, a 5-dimensional search should be possible in which the two translationalcomponents of motion are also estimated. However, the e�ect is weaker for trans-lational motions since points at in�nity (background points) are only a�ectedby rotational motion. Nevertheless, we believe that a full motion-and-structure
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A B CFig. 3. A)True (squares) and estimated (circles) rotations for the NASA ight se-quence, for a known translational motion. B)True (squares) and estimated (circles)rotations for the NASA ight sequence for a translational motion error of 5�. C)Meansquare error as a function of rotation in (x; y); (y; z); (x; y), for a translational motionerror of 5�. All angles in degrees, spanning �3�.algorithm can be designed based on the paradigm of epipolar search and work isprogressing in this direction, including the derivation of other statistical proper-ties of epipolar misalignment.Experimental results showed good agreement between the estimated and cali-brated rotations of the NASA helicopter sequence when the translational motionwas either known or erroneous within 5� accuracy. Further, the experimental re-sults also suggest that epipolar search is quite robust to both noise and therelative magnitude of displacement between image frames. Preliminary worksuggests that the translational motion can be estimated using other statisticalmeasures along epipolar lines via an independent epipolar search. The proposed5-dimensional search then reduces to an iterative re�nement scheme in whichthe rotational motion is estimated by a 3-dimensional epipolar search and thetranslational motion by a 2-dimensional search.The statistical properties of images calculated along epipolar lines appearsto be an interesting research direction. Clearly, intensity histograms are justone of many possible statistical measures and it is importatnt to develop a
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