
1722
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

LETTER Special Issue on Machine Vision Applications

Fast Lighting/Rendering Solution for Matching a 2D

Image to a Database of 3D Models: “Lightsphere”∗

Albert Peter BLICHER† and Sébastien ROY††, Nonmembers

SUMMARY We describe a method for object recognition
with 2D image queries to be identified from among a set of 3D
models. The pose is known from a previous step. The main
target application is face recognition. The 3D models consist of
both shape and color texture information, and the 2D queries
are color camera images. The kernel of the method consists of
a lookup table that associates 3D surface normals with expected
image brightness, modulo albedo, for a given query. This lookup
table is fast to compute, and is used to render images from the
models for a sum of square difference error measure. Using a
data set of 42 face models and 1764 (high quality) query im-
ages under 7 poses and 6 lighting conditions, we achieve aver-
age recognition accuracy of about 83%, with more than 90% in
several pose/lighting conditions, using semi-automatically com-
puted poses. The method is extremely fast compared to those
that involve finding eigenvectors or solving constrained equation
systems.
key words: face recognition, biometrics, computer vision,
model-based vision

1. Introduction

We are interested in searching a potentially very large
database of 3D solid models, which include texture in-
formation, to find a match to a 2D photographic query,
under conditions of arbitrary illumination and pose.
We have developed a technique to accomplish this using
data captured by rangefinder hardware developed by
our collaborators at the NEC C&CMedia Research Lab
in Kawasaki, Japan. This hardware [6], [13], (an early
version of the Fiore model) captures accurate shape in-
formation in registration with texture data, producing
a 640 × 640 texture and range mesh, with 24 bit color
and less than 0.5mm range error.

Our approach is based on a recognition paradigm
which uses computer graphics techniques to render
from the model database and then make a comparison
with the query image. In this paradigm, pose is first
determined by some means, then based on that pose
and knowledge of the query, an estimate is made of

Manuscript received February 20, 2001.
Manuscript revised June 15, 2001.

†The author is with the NEC Research Institute, 4 In-
dependence Way, Princeton, NJ 08540-6634 USA.

††The author is with the Université de Montréal,
Département d’Informatique et recherche opérationnelle,
CP 6128 Succ. Centre-Ville, Montréal (Québec), H3C 3J7
Canada, and NEC Research Institute.

*This paper is an expansion of a paper that was pre-
sented at the IAPR Workshop on Machine Vision Applica-
tions (MVA2000), November 2000, Tokyo [1].

the appearance of each model under the same lighting
conditions as the query. The model whose rendered ap-
pearance is estimated to most closely match the query
is deemed the most likely identification.

Even when the correct pose of a 3D model is
known, the illumination can create large differences be-
tween the reprojected 3D model and the query image,
so that properly compensating for lighting variations is
a major challenge for recognition. Major contributions
to understanding the interplay of lighting, 2D appear-
ance, and 3D shape have been recently made by Bel-
humeur, Kriegman, and their coworkers [2]–[5] as well
as others such as Vetter [11].

In a very large database, the computational cost of
comparing many models to a query is critical. Our tech-
nique, which we call “lightsphere,” has been designed
to be very fast and is not very restrictive in the assump-
tions it makes about the albedo, the surface properties,
and the lighting conditions.

Lightsphere avoids solving for light sources, as one
might do e.g. following the methods of Georghiades,
Kriegman, and Belhumeur [5]. We believe this offers
a substantial speed improvement. (In our preliminary
testing, comparing with naive implementations of light
solving using nonnegative least squares methods, we
observe a factor 10–100 speedup. Lightsphere is linear
in query size and database size.)

Another approach to avoid solving for light sources
is to use Principal Components Analysis (PCA) to find
a subspace in which most of the energy of images un-
der variable lighting lies [6], based on earlier work going
back to [7], [9], and [10], though it should be noted that
these earlier works were not concerned with lighting
variation per se.

The lightsphere method assumes that pose has al-
ready been solved at a previous stage. In our present
system, we use pose based on a solution from a small
number of hand-extracted feature points — 12 or fewer,
depending on their visibility in the particular pose.
Given a query, pose must be solved for each possible
model in the database; however this is quite fast. In
the applications we have in mind, a single query to be
identified is sufficiently important that 2 or 3minutes of
human operator time is acceptable to click on these fea-
ture points. This produces pose solutions good enough
to achieve fairly good results. Preliminary work shows
that other methods of improving pose solutions greatly

LETTER
1723

improve the accuracy lightsphere attains. That work is
not reported here, however.

The kernel of the lightsphere algorithm is based on
the fact that given a 2D query, a candidate 3D model,
and a corresponding pose, we can project the 3D model
in registration with the 2D query. Of course, we may be
matching (or aligning) the wrong 3D model, in which
case we would expect the registration to be poor. If one
knew the lighting for the query, then one could render
the 3D model in registration with the 2D query, and
compute an error measuring the similarity between the
rendered image and the query image.

An important consequence of using a 3D model as
a candidate to match the 2D query is that segmenta-
tion of the query is not needed, because each 3D model
has already been segmented from the background in the
3D model data capture process. In our experience, it
is easy to do this segmentation of the 3D model with
minimal manual intervention, since the 3D data capture
takes place under controlled conditions, and addition-
ally the 3D information simplifies segmentation. When
the 3D model and the 2D query are compared, they
are compared under a known pose, and the segmen-
tation of the 3D model is used as a mask to segment
the 2D query. In the case where we are comparing the
wrong model to the query, this segmentation of the 2D
query will usually be incorrect , but this is a desirable
property, because incorrect segmentation for the wrong
model leads to larger error, and we want larger error
when the model is incorrect.

In this context, one possible approach that can be
imagined is to use the normals and the texture from
the 3D model, in conjunction with the assumption of
Lambertian reflectance, to compute a light source dis-
tribution that best accounts for the query. This is sim-
ilar to [5]. We have also tested that approach; however,
the lightsphere method is able to avoid the costly step
of actually solving for the light sources, as follows.

2. Lighting Model and Notation

We assume that all light sources are at infinity (i.e.,
isotropic lighting), so that the lighting does not vary
from point to point on the illuminated surface (except
for the effect of self-shadowing by attached shadows).
We make no assumption about the type of surface of the
object (e.g., we do not assume that it is Lambertian).
Rather, we assume only that the reflected light depends
on the surface normal, the incoming light, and linearly
on some albedo that may vary from point to point on
the surface.

Let:

A be the albedo (intrinsic reflectance) function,
N be the Gauss map of the surface, i.e., the function
that maps each point to its normal.

L be a function on directions in 3-space that represents

the light intensity coming from each direction.
I be the observed image intensity on the surface.

I.e., if we call the surface S, then

A : S → R+, where R+ is the nonnegative real num-
bers;

N : S → G, where G is the Gaussian sphere;
L : G → R+; and
I : S → R+.

In this notation†, the Lambertian model of surface
reflectance with attached shadows can be written as

I = A

∫
g∈G

L(g)ρ ◦ (g •N) dµ (1)

where • is the usual vector dot product; ρ is a recti-
fier function which clamps negative values to zero, i.e.
ρ(x) ≡ max(0, x); µ is the standard area measure on
the sphere; and the function I is defined by

I(p) = A(p)
∫

g∈G

L(g)ρ(g •N(p)) dµ, p ∈ S (2)

3. The Lightsphere Method

Note that Eq. (2) is of the form

I(p) = A(p)BL(N(p)), (3)

with BL : G → R+. B can be thought of as a “bright-
ness” function that depends only on L and N(p), which
captures the interaction of the lighting distribution
with the normal. (In the special case of a Lamber-
tian surface and a point light source, BL is just the
dot product with the light source vector, clipped by ρ
to prevent negative brightness.) We assume only that
the reflected intensity is governed by a relation of the
form of Eq. (3); we do not require that the surface be
Lambertian. Notice, however, that this does presume
that the observed intensity at a point does not depend
on camera position.

In the render-compare recognition paradigm we
are using, we are given Amodel, Nmodel, and Iquery,
and we must compute an Irendered from the model to
compare to the query. In addition, we know the pose,
and therefore we can register the model with the query
(even for a wrong model — this is the best registration
based on our pose estimate).

Although L is unknown, we can compute the fol-
lowing quantity from our data, by dividing Eq. (3) to
give

BL(Nmodel(p)) =
Iquery(p)
Amodel(p)

, (4)

†Notice that we are using notation where these entities
are functions; for example, the albedo at the point p ∈ S
is written as A(p) in this notation, and the light intensity
from the direction g ∈ G is written as L(g).

1724
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

where we have identified points in the query with those
in the model by using the pose information for regis-
tration.

Then we can render from a model, simply by mul-
tiplying B by the albedo Amodel, yielding

Irendered(p) = Amodel(p) · BL(Nmodel(p)) (5)

If we were to do this point by point on the sur-
face, this is a triviality, and we would simply get back
the Iquery that we started with. However, the true
BL depends only on the normal, and only implicitly
on the location (through the map Nmodel). This im-
poses a constraint on the values thatBL can take, which
we can exploit: different points with the same normal
should have the same value of BL. We therefore ex-
pect this constraint to be violated much more severely
when matching the wrong model than when matching
the correct model.

Formally, we can specify all the points with the
same normal by considering the inverse of the Gauss
map, N−1. Then for each g ∈ G, N−1(g) is the set
of surface points with the normal g. The constraint
says that under ideal conditions, for the model which
matches the query, we would compute a BL that is
constant on each N−1(g). Of course, in the presence of
noise and other errors this will not be exactly true, so
instead we consider the average value of BL computed
on each N−1(g); call this B̄L. I.e.,

B̄L(g) =
1

|N−1(g)|
∑

p∈N−1(g)

Iquery(p)
Amodel(p)

(6)

Now we can render using

Irendered(p) = Amodel(p) · B̄L(Nmodel(p)) (7)

By now using B̄L, we get not a triviality, but a
rendered image that should be faithful for the matching
model (up to the limits of other errors), and poor for
non-matching models.

In order to compute B̄L, we tesselate the Gaus-
sian sphere of the model into bins, and compute B̄L for
each bin, simply by iterating across the query raster,
looking up the corresponding normal and albedo from
the model data, and accumulating a B̄L for each bin†.
(This Gaussian sphere bin data structure is the “light-
sphere.”)

The tesselation groups many similar normals to-
gether; therefore to be precise we must modify Eq. (6)
slightly, as follows.

B̄L(Γ) =
1

|N−1(Γ)|
∑

p∈N−1(Γ)

Iquery(p)
Amodel(p)

,

where Γ is now a region of the Gaussian sphere from
our tesselation.

Rendering the model in the lighting of the query
then simply requires a lookup of B̄L to insert into

Eq. (7). However, in order to compensate for the quan-
tization noise, we perform a bilinear interpolation on
the B̄L values depending on where the model normal
vector to be rendered falls within a bin. This interpo-
lated B̄L is what is actually used for rendering.

When we render using the average of a bin, the
pixel intensity error is a measure of how consistent the
query and model are under the lighting that created
the query. This can therefore be thought of as a cheap
approximation to computing the mutual information
between the query and the projected model, a technique
elaborated in [12]††.

Note that the lightsphere data structure of bins
on the Gaussian sphere is a lookup table for a “bright-
ness” coefficient that can be used in conjunction with
the known albedo and normal for rendering. However,
it is not a solution for light direction or light distribu-
tion. Rather, it can be thought of as an estimate of
the brightness of a uniform sphere, having the same re-
flectance properties as the query (not necessarily Lam-
bertian), under the same illumination as existed for
the query. This is essentially a convolution with the
light distribution; recovering the light distribution it-
self would require a costly deconvolution step, as well
as the need to make additional assumptions about the
form of BL, e.g. the assumption that it is Lambertian.
The main contribution of the lightsphere algorithm is
to use this convolved brightness information, which is
sufficient for rendering, without requiring the costly so-
lution for lighting, or other relatively costly computa-
tions such as least squares solutions.

B̄L is an approximation to some function on the
Gaussian sphere that can be used for rendering. We
have used binning and averaging to estimate this func-
tion, and lookup and interpolation to evaluate it. This
choice allows for a very fast algorithm. However, clearly
other methods can be used to construct such a function;
e.g., one could fit a spline or some other basis. This
would be expected to improve accuracy results with a
tradeoff of slower speed; we are pursuing some such
methods in a continuation of the work reported here.

3.1 A Note about Albedo Estimation

We have found that it is difficult to get accurate es-
timates of true albedo. Fortunately, the linearity of
Eq. (3) provides us with a certain amount of robustness
against inaccurate albedo estimates. We have found it
useful to estimate albedo simply by applying a diffuse
lighting. In the absence of cast shadows, the albedo can
be measured as the image intensity resulting from per-

†Although we currently use a simple-minded checker-
board tesselation of the x-y plane, one could use vector
quantization to optimize the bins. Although vector quan-
tization is expensive, this can be computed offline for each
model.

††This observation is due to David W. Jacobs.

LETTER
1725

Fig. 1 Percent recognition accuracy as a function of light-
ing and pose of the query. Images shown are reduced
monochrome versions of full color query images for one sub-
ject. The query set consists of pictures of the same 42 indi-
viduals as used in the 3D model set. (The strange number-
ing for lighting and pose is for historical reasons.)

fectly diffuse lighting. However, in practice the lighting
is not perfectly diffuse. Nevertheless, to the extent that
the observed intensity obeys the relation of Eq. (3), this
is not a problem. Call the true albedo A∗, and the true
“brightness” function B∗

L. Then the quantity we are
using as the albedo, A, is really given by A = A∗B∗

LA
,

where B∗
LA

is the true “brightness” function for the
lighting conditions LA under which A was measured.
Thus, I = A · (B∗

L/B∗
LA
), which is again of the form of

Eq. (3), albeit with a BL that is not the “real” bright-
ness function, but due to linearity, this does not affect
the result of estimating BL and using it to render with
A as albedo.

4. Results

We have tested this technique using a database of 42
3D models of human faces and 1764 queries, under all
combinations of 7 poses and 6 lighting conditions, some
of which are quite extreme. The database consists of
members of NEC CRL (located in Japan), and there-
fore is very homogeneous in terms of race, age, and sex.
(A more heterogeneous data set can be expected to re-
sult in better differentiation among individuals, and we
are currently working on developing such a data set.)

The 3D model data consists of 24 bit RGB texture
information on a 640×640 grid with depth values accu-
rate to about 0.5mm (standard deviation of error). The
query data is 640 × 480, also 24 bit RGB. The results
we present include a preprocessing step of smoothing
the computed normals of each 3D model by a factor of
16× 16.

In this database, query images were taken nearly at

Fig. 2 Cumulative rank curve taken over all 42 combina-
tions of pose and lighting conditions. The ordinate repre-
sents the fraction of the time that the correct answer was
ranked at or above the value on the abscissa. (Rank num-
bering starts at 0, not at 1.)

the same time as the 3D models were captured. There-
fore, to a good approximation the faces behave as rigid
objects, and there is little variation in facial expression.
We are not attempting in this work to devise a method
robust against changes in facial expression, but such
work, we believe, can be built upon this work.

Below are results using semi-automatically deter-
mined poses, i.e. poses that were automatically com-
puted from 12 or fewer fiducial points manually clicked
once and for all on each model, and once on a single
lighting condition of each pose of each query. We ob-
tained the recognition accuracies shown in Figs. 1 and
2.

Figures 3 and 4 illustrate the operation of the al-
gorithm. Figure 3 shows the sequence of intermediate
results in attempting to test a 2D query against the 3D
model which happens to be the correct answer for that
query.

The first frame (a) shows the query image.
The algorithm is given a pose for the 3D model we

want to test against that query. This pose has been
computed specifically for this query-model pair, and a
different pose would be computed for a different model
to test. The next frame (b) shows the results of render-
ing the 3D candidate model in the pose that was sup-
plied. This is a rendering only of the texture-mapped
albedo; no lighting is being used, or equivalently, the
lighting for this rendering is perfectly diffuse. The black
area indicates data that is not used.

The next frame (c) shows a representation of the
registered normals for the 3D model in that pose. (Ac-
tually this image corresponds to a color coding of 2
components of the normal; another image is needed to
define the complete normal.)

Based on the query (a), rendered model albedo
(b), and registered normals (c), the lightsphere data

1726
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.12 DECEMBER 2001

(a) (b) (c)

(d) (e) (f)

Fig. 3 Example of operation of Lightsphere for correct
match, i.e. when the model being examined is that of the
individual in the query. From left to right: (a) query image;
(b) 3D model texture projected for previously found pose
for this query/model pair; (c) one component of the surface
normal in registration with the model in (b); (d) lightsphere
bin contents for R,G,B channels, and bin counts; (e) syn-
thetic image of model in (b) rendered using computed light-
sphere; (f) error image between (a) and (e), where lighter
represents higher error.

structure expressing a lookup table for “brightness” as
a function of normal is computed. This is displayed in
the next frame (d). The first 3 subimages correspond
to the 3 color channels (R, G, B), and the 4th subimage
represents the sample count in each bin of the lookup
table. The bin value is shown as a function of the x and
y components of the unit normal only. (The z value is
constrained by x2 + y2 + z2 = 1; i.e., one can imagine
looking down at a hemispherical cap painted with the
lightsphere brightness coefficient.)

Using this lookup table (d), the 3D model can be
rendered to conform to the light of the query. This is
done by using the information in frames (b), (c), and
(d) to render with lighting in the next frame (e). We
emphasize that the “lighting” used for this rendering,
is not actual lighting — rather, the rendering is done
based on the “brightness” function computed in the
lightsphere algorithm. This amounts to rendering (b)
with the lighting of (a), but without knowing or solving
for the actual lighting.

Finally, the lighting-rendered model in (e) is com-
pared with the query (a), for the masked area of inter-
est, to yield a difference image, shown in the final frame
(f). The mean square error of the difference image is
used as the quality measure for recognition.

Figure 4 shows the same process in the case where
a comparison is being made to a 3D model that does

(a) (b) (c)

(d) (e) (f)

Fig. 4 Example of operation of Lightsphere for wrong
match — the model is of a different individual than the
query. The query is the same as that in Fig. 3, but a dif-
ferent model is being used. See Fig. 3 for an explanation of
subparts. Note the significantly larger error than in Fig. 3
(which may reproduce poorly in printing). The synthetic
image has been rendered based on normals from the (wrong)
model, and lightsphere values from the intensity values of
the query.

not correspond to the query, i.e., for a model which
is the wrong answer. In this case the difference image
results in a higher mean square error, and the wrong
match is rejected in favor of the correct one.

It is difficult to compare these results with other
work, and any such comparisons should be viewed with
suspicion. First of all, previous work does not use 3D
models. Second, it is difficult to find work which uses
such a wide variation of lighting and pose. Most work
dealing with lighting variation uses smaller test sets.
And, finally, comparisons are not meaningful unless
the methods being compared used the same training
data, and the same test data. In addition, the accu-
racy results we present here are a preliminary proof-of-
concept. Since the time that we obtained these results,
we have developed methods that improve the pose so-
lution with dramatic improvement of accuracy. Light-
sphere should be thought of as the lighting compensa-
tion part of a system, while recognition accuracy mea-
sures the performance of the whole system, and there-
fore makes it difficult to draw tight conclusions about
just a single component.

As a rough comparison, we indicate some results
from other work†. Results reported in [8] include a

†To derive these numbers we have made estimates, in-
ferences, and approximations based on the information in
the source. We apologize to other authors if we have mis-
represented their results.

LETTER
1727

number of systems. About 4 pose/lighting conditions
seem to be comparable to ours in this data set. The best
reported accuracy results are, for conditions roughly
comparable to our pose/lighting combinations, (1, 000):
96%, (1, 002): 82%, (4, 000): 63%, (6, 000): 5%.
(Note that the 5% figure is an unfair comparison be-
cause training data was not appropriate.) These figures
are for about 1000 models. Because [8] provides rank
curves, we can estimate that the accuracy on a dataset
of the same size as ours, 42 models, would be about
(1, 000): 99%, (1, 002): 96%, (4, 000): 72%, (6, 000):
25%.

Among the best results under comparable con-
ditions have been achieved by Georghiades, et al. [4].
For roughly comparable pose/lighting conditions their
recognition accuracy is: (1, 000): 100%, (1, 002): 100%,
(1, 003): 100%, (1, 004): 100 (2, 000): 100%, (2, 002):
100%, (2, 003): 99%, (2, 004): 95%, (4, 000): 99%,
(4, 002): 99%, (4, 003): 99%, (4, 004): 91%. However,
these results were obtained with only 10 models. Using
the rank curves for lightsphere, we can estimate what
the accuracy would be for 10 models: in all the cases
listed for [4], lightsphere accuracy for 10 models would
be 100%. Indeed, it would be 100% on nearly all combi-
nations of lighting and pose in our experiments, if the
dataset included only 10 models. (100% accuracy on
10 models is equivalent to ranking the correct model in
the top 1/10 of all models, so this can readily be esti-
mated from rank curves obtained with a larger number
of models and queries.)

Acknowledgments

We are deeply indebted to Johji Tajima, Shizuo
Sakamoto, and Rui Ishiyama of the NEC C&C Media
Research Laboratory for generating and providing the
data used in these experiments, as well as for many in-
formative discussions that provided the insight and in-
spiration for the ideas presented here. David Jacobs of
the NEC Research Institute (NECI) was instrumental
in our approach to this problem, and in helping us see
our technique in perspective (figuratively). C. W. Gear,
David Waltz, and Mitsuhito Sakaguchi of NECI en-
couraged and made possible the collaboration with our
Japanese colleagues whose fruits are reported here. Pe-
nio Penev of NECI suggested the use of vector quan-
tization for binning, and was instrumental in running
experiments and analyzing data. Jeffrey Mark Siskind
of NECI graciously provided computational resources.

Rui Ishiyama performed the herculean task of the man-
ual component of the pose solutions used in our exper-
iments. Youssef Ibrahim of Université de Montréal ran
the experiments to gauge performance versus resolu-
tion. We thank Shizuo Sakamoto and Rui Ishiyama
for the kind permission to use their likenesses in the
figures. We also thank the reviewers of this paper for
their helpful comments.

References

[1] A.P. Blicher and S. Roy, “Fast lighting/rendering solution
for matching a 2D image to a database of 3D models: ‘Light-
sphere’,” Proc. IAPR Workshop on Machine Vision Appli-
cations (MVA2000), pp.481–484, Tokyo, 2000.

[2] P.N. Belhumeur and D.J. Kriegman, “What is the set of
images of an object under all possible lighting conditions?”
IEEE Conf. CVPR, pp.270–277, 1996.

[3] P.N. Belhumeur and D. Jacobs, “Comparing images under
variable illumination,” Proc. IEEE Conf. CVPR, pp.610–
617, Santa Barbara, 1998.

[4] A.S. Georghiades, P.N. Belhumeur, and D. Kriegman,
“From few to many: Generative models for recognition un-
der variable pose and illumination,” Proc. 4th IEEE Inter-
national Conf. Automatic Face and Gesture Recognition,
pp.277–284, Grenoble, 2000.

[5] A.S. Georghiades, D. Kriegman, and P.N. Belhumeur, “Il-
lumination cones for recognition under variable lighting:
Faces,” Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp.52–59, Santa Barbara, 1998.

[6] R. Ishiyama, S. Sakamoto, and J. Tajima, “A new face-
recognition system with robustness against illumination
changes,” Proc. IAPR Workshop on Machine Vision Ap-
plications (MVA2000), pp.127–131, Tokyo, 2000,

[7] M. Kirby and L. Sirovich, “Application of the Karhunen-
Loeve procedure for the characterization of human faces,”
IEEE Trans. PAMI, vol.12, no.1, pp.103–108, Jan. 1990.

[8] P.J. Phillips, H. Moon, S.A. Rizvi, and P.J. Rauss, “The
FERET evaluation methodology for face-recognition algo-
rithms,” IEEE Trans. PAMI, vol.22, no.10, pp.1090–1104,
Oct. 2000.

[9] L. Sirovich and M. Kirby, “Low dimensional procedure for
the characterization of human faces,” J. Optical Society of
America-A, vol.4, no.3, pp.519–524, 1987.

[10] M. Turk and A.P. Pentland, “Eigenfaces for recognition,” J.
Cognitive Neuroscience, vol.3, no.1, pp.71–96, 1991. Earlier:
“Face recognition using eigenfaces,” IEEE Conf. CVPR,
pp.586–591, 1991.

[11] T. Vetter, “Synthesis of novel views from a single face
image,” International J. Computer Vision, vol.28, no.2,
pp.103–116, June/July 1998.

[12] P.A. Viola andW.M. Wells III, “Alignment by maximization
of mutual information,” International J. Computer Vision
(IJCV), vol.24, no.2, pp.137–154, Sept. 1997.

[13] http://www.nec-eng.co.jp/cm/finder

