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Abstract—This paper proposes a new approach in struc-
tured light correspondence to alleviate the camera-projector
synchronization problem. Until now, great care was required
to make sure that each camera image was corresponding
exactly the correct pattern in the sequence. This was difficult
to achieve with low-cost hardware or large size installations.
In our method, the projector sends a constant video loop of a
selected number of unstructured light patterns at a high frame
rate (30 to 60 fps for common hardware), which are captured
by a camera without any form of synchronization. The only
constraint to satisfy is that the camera and projector frame
rates are known. The matching process not only recovers the
correct pattern sequence, but is impervious to partial exposures
of consecutive patterns as well as rolling shutter effects.

Keywords- Unstructured light, Coded patterns, Projector-
camera unsynchronized, 3D scanning.

I. INTRODUCTION

The first appearance of 3D scanners goes back several

decades. For some time now, researchers have been looking

for a way to scan objects and get a realistic 3D model.

Nowadays, there are several 3D scanners based on different

approaches to achieve 3D reconstruction. One is based on

the projection of a laser beam and analyzes its trajectory

as well as its deviation. Another one calculates how long a

laser takes to get to the surface of the object and back to

the projector, so-called time-of-flight [1]. Finally, some 3D

scanner use structured light, which consists of projecting a

known pattern encoding matching information onto an object

and capturing so its geometry can be derived [2].

The most common method is to use a DLP projector and

rely on Gray code patterns. They provide a temporal binary

encoding of the position of each projector pixel. In this

way, it is possible to establish the correspondence directly

between the camera and the projector. However, a single

error in a pattern will result in a wrong decoded position. A

Gray code feature is that neighboring pixel codes differ only

by a single bit. This spreads evenly the number of error bits

accross all possible codes [3]. However, the presence of low

frequency spatial patterns in Gray code images increase the

sensitivity to inter-reflections and indirect illumination [4],

[5].
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Figure 1. Synchronization model. The projector and camera share a
common frame rate (fps). The first projector pattern seen by the camera
can be any pattern. Exposure time and temporal overlap result in a mixture
of two consecutive patterns in a single camera image.

A. Unstructured Light

Unstructured light is also a projected encoding, but it does

not directly encode the pixel positions [6]–[9]. The temporal

sequence provides a binary code which is then matched

to a reference sequence. The decoupling of encoding and

patterns makes it possible to select the spatial frequency

and achieve great robustness to indirect lighting as well

as difficult capture conditions. In this paper, the complete

flexibility in the selection of unstructured patterns will prove

essential to solve the synchronization problem. An important

advantage is that it is possible to make an unstructured light

correspondence from the projector to the camera as well as

the usual camera to the projector matching. This alleviates

the need to compute an inverse mapping, which is prone to

errors.

B. Synchronization

The synchronization of the camera-projector system can

take multiple forms. In this section, we will describe the

three most important aspects for our method: first image,

temporal offset, and frame rate, as illustrated in Fig. 1.

First, the projector sends a video loop repeating n patterns

and the camera starts capturing at an arbitrary time. The

first image in the sequence is therefore an unknown pattern

and must be estimated (Fig. 1, first). To make this problem

simple, some methods project special patterns, or repeat the

first pattern, in order to allow easy identification of the

start of the sequence [10]. This will not be necessary in

our case. Secondly, there is a temporal offset between the

camera and the projector image sequences (see Fig. 1, mix).

This offset generally results in a mixture of two consecutive

patterns in a single captured image. The multiple exposure

277

2018 15th Conference on Computer and Robot Vision

978-1-5386-6481-0/18/$31.00 ©2018 IEEE
DOI 10.1109/CRV.2018.00046

Authorized licensed use limited to: Université de Montréal. Downloaded on November 17,2022 at 18:01:54 UTC from IEEE Xplore.  Restrictions apply. 



problem makes the decoding or establishing correspondence

between camera and projector images impossible. Aside

from using synchronization, the multiple exposure problem

can be solved with an accurately calibrated image formation

model [11] or by designing the method to be robust to this

effect, as we do in this paper. Finally, the last aspect is

the frame rate of the camera and the projector (see Fig. 1,

frame duration). Both frame rates are assumed to be known

in advance, and to never change in time. It is possible to

account for differences in frame rates, but the simplest and

most practical approach with common hardware is to enforce

the same frame rate for both the camera and projector,

thereby ensuring stable multiple exposure of consecutive

frames. When frame rates are not matched, we can end up

with many duplicate images of a single pattern, or missing

patterns. These two cases, even if they can be alleviated with

some effort, are easy to avoid in practice, since frame rates

tend to be standardized and stable.

In this article, we will explain our method, proceed to

identify the first pattern, and then establish correspondence

with the reference patterns while discovering the mix of

multiple exposures.

II. PREVIOUS WORK

There has not been much work on the specific problem

of unsynchronized structured light. Most methods assume

perfect synchronization of the camera-projector system or

try to improve it. The article [12] summarizes well the three

main approaches of this problem: hardware synchronization,

software synchronization, and no synchronization. The first

one is hardware synchronization. It is a triggering circuit that

synchronizes the projector and the camera [13]–[15]. This

approach is not accessible to everyone because it requires

hardware, namely a projector and a camera that each sup-

ports external synchronization. This is rare for inexpensive

hardware. Its advantage is that the system can scan at a

very high frame rate (sometimes up to 3000 fps) [16], [17].

The second approach is to synchronize the camera-projector

system by software [10], [18], [19]. Unlike the previous one,

it does not cost as much and allows common off-the-shelf

hardware, but it requires a longer acquisition time [20]. It

must ensure that each projected pattern is captured by the

camera without a risk of multiple exposure of consecutive

patterns. The resulting scan time is not acceptable in many

cases, such as scanning faces. In such situations, the acquisi-

tion time has to be reduced because a person cannot stay still

more than a few seconds. Also, since we intend to use low-

cost hardware, no synchronized solution is adequate. That’s

why we propose the unsynchronized approach.

There are some methods that are based on the unsynchro-

nized approach [11], [21], [22]. One successful method that

is close to ours is [11], where a detailed image formation

model is devised and solved to recover synchronization

parameters and subsequently recover Gray code matching

Figure 2. Unstructured light patterns can be chosen arbitrarily. Above,
two such patterns at different spatial frequencies.

patterns. Their algorithm relies on exact knowledge of the

image formation process to be able to determine the time

required by the camera to capture each single row of the

projected image (they assume a rolling shutter camera), as

well as the time required to capture the entire image. In this

way, they can resolve the multiple exposure problem present

in the unsynchronized captured images. To detect the first

projected pattern, extra frames are added at the beginning

of the sequence. They are either full black (B) or full white

(W) frames, set up as the sequence {B, B, W, W, B} so it

becomes easy to detect it in the camera image sequence.

Overall, their method is quite complex computationally,

especially given the equation systems that have to be re-

solved, and its reliance on Gray code patterns makes it more

sensitive to inter-reflections. However, their results indeed

prove that unsynchronized capture can be done, even if the

hardware requirement is not completely general and require

a special fast projector.

In this paper, we present a very simple and fast method.

Described in Sec. III, it scans without synchronization at 30

to 60 fps in less than two seconds. Moreover, it does not

require any special hardware, as the experiments presented

in Sec. IV will illustrate.

A. Generating unstructured light patterns

In this paper, we rely on the concept of unstructured

light patterns presented by Couture et al [6]. However, the

patterns are generated in a different way, such that they

don’t present large white or black regions. They are built

simply as a sum of sines with random orientations but similar

frequencies, so each unstructured light pattern is different.

Fig. 2 shows two such patterns at different frequencies. The

quality of the unstructured match depends on the spatial

frequency and the number of bits of code, which itself

depends on the number of patterns. If the frequency is

too low, then the codes of neighbouring pixels become too

similar which causes bad matches. Increasing the number

of patterns can help remove this ambiguity. Using higher

frequency patterns can also help (see Fig. 2, right), but

if the frequency becomes too high then the camera might

not be able to distinguish light and dark bands, resulting in

matching errors.

278

Authorized licensed use limited to: Université de Montréal. Downloaded on November 17,2022 at 18:01:54 UTC from IEEE Xplore.  Restrictions apply. 



B. Quadratic code

Our method will use linear code to find the first image

of the sequence, and then quadratic code to estimate the

mixture of the captured images and to compute the final

matching.

As demonstrated by Couture et al [23], for n patterns,

the linear code-length is n bits long and provides n bits of

information. On the other hand, the quadratic code is derived

from the same n patterns, have a length of n2−n
2 bits, which

provide n log n bits of information, the maximum possible

out of n patterns. As an example, 30 patterns can provide a

linear code of length 30 bits for 30 bits of information, or a

quadratic code of length 435 bits for 147 bits of information.

Establishing pixels correspondence between camera and

projector is accomplished by the LSH (Locality Sensitive

Hashing) algorithm [24]. This probabilistic algorithm is

specialized in searching for nearest neighbors in very high-

dimensional spaces. At each iteration, it generates different

match proposals from which we keep only the best one at

the end. Because of its probabilistic nature and efficiency in

high dimensions, LSH is better suited to match long codes.

That’s why, in order to increase the amount of information

and decrease the matching error, we prefer using quadratic

codes with fewer images, so the capture time remains small.

III. UNSYNCHRONIZED CAMERA-PROJECTOR SYSTEM

As illustrated in Fig. 1, a projector plays a continuous

video loop of a number of patterns (typically 30 or 60) at a

fast frame rate, typically the same as the projector patterns.

The patterns are random unstructured light patterns. The

capture starts somewhere in the sequence without synchro-

nization. The camera and the projector are assumed to have

the same frame rate, so each projected pattern is seen exactly

once, possibly mixed with another one, by the camera. In

practice, it is important to give enough time to the camera

to adjust itself, so we skip a number of images at the start

of the capture. Also, when scanning deformable or moving

objects such as faces, capturing more images can be helpful

since it allows us to choose the optimal sequence where the

person moves the least. As we know, it is very hard for a

human to remain still for more than two seconds. This is

why we focus on scans that require two seconds or less.

Since the start of the camera capture is unsynchronized, it

is essential to establish which pattern is seen first. Since we

capture the same number of images as there are projected

patterns, all the algorithm has to do is search across all cap-

tured images for the first pattern. However, it is impossible

to recognize such a pattern, so another approach must be

used.

A. Finding the first image of the sequence

As mentioned previously, the camera can start capturing

at any time while observing a continuous video loop of

patterns. The first step of our method is thus to find which
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Figure 3. Matching costs for finding the first image. The average of the
erroneous bits decreases from 22 to 13 on a 60 bits code. The x and y axes
represent the pattern number and the number of erroneous bits, respectively.

image in the captured sequence corresponds to the first

pattern. For this section, we assume that the images are not

a blend of partially exposed consecutive patterns. Even if

this is not true in practice, partial multiple exposures always

feature a "dominating" pattern, which is enough for finding

the first image.

First, we compute a binary code for the projector pat-

tern sequence and the captured image sequence in their

original order, both from their start. For speed purposes,

the code is linear, not quadratic. Then, we compute a first

correspondence between the projector and the camera, by

running a small number of iterations of LSH (typically

6). The intent is not to obtain an actual match but just

to detect if we are matching completely unrelated images

or not. We calculate the sum matching costs after a few

iterations of LSH. After that, we shift the camera codes to

the left, effectively changing which image is considered the

first, while the projector codes remain unchanged. We then

proceed to match these codes again and keep the matching

costs. After n shifts, we have tested all possible matches. All

matches should have a similar high cost, and a single match

will be lower, indicating we have found the first image.

Once the minimum is found, we reorder the initial camera

sequence according to its position found and the sequences

are effectively aligned.

For this step, we use linear code because the gap between

the sum of the first image and the other sums is large, even

after the first iterations of LSH, as shown in Fig. 3. The

matches obtained are affected by the partial exposure of the

camera, but the gap between the sums is not really affected.

That’s why we have assumed above that our images are

perfectly exposed. In the next section, we will introduce

partial exposure that affects our captured images.

B. Partial exposure of consecutive patterns

When capturing asynchronously, as illustrated in Fig.

1, it is entirely possible that the projected pattern will

change during the exposure of a single image. The resulting

image will feature a multiple exposure, a mixture, of two

consecutive projected patterns. When this happens, matching

will become harder, or even impossible. This problem is even
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Figure 4. Different mix values (in percentage) that represent three cases
of a partial exposure (50%, 75% and 100%) of two consecutive patterns.
The last image represents a rare case of a synchronized capture without
mixture (bottom).

worse for rolling shutter cameras, since the exposure start

time varies from the top to the bottom of the camera image.

In these conditions, matching with the original projected

patterns will yield a partial match, at best, as illustrated in

the top left of Fig. 5.

In the presence of partial exposures, the finding first
image step previously presented will still work. It will

pick the strongest exposure as the reference for a given

image. However, even with the correct first image, the actual

matching must account for partial exposure.

Unstructured codes, contrary to structured codes, allow

total freedom in the selection of the projected patterns. This

property will now become very useful. Instead of consi-

dering an image as a partial exposure of two consecutive

patterns, we will consider that the image is a full exposure

of a new reference pattern which is built from a mixture

of two consecutive patterns. Fig. 5 illustrates the matching

results obtained for various mixing of consecutive patterns.

The method for estimating this "consecutive pattern mix-

ture" is described in the following section.

C. Mixture of captured images

As defined above, the lack of synchronization can induce

a multiple exposure between two consecutive patterns, as

illustrated in Fig. 4. The first and second cases (top and

middle) are a typical variation of the exposure between

the camera and the projector. This variation generates the

mixture of two consecutive patterns. The mixture represents

a percentage (50:50 or 75:25) of each projected pattern. The

last example is a rare case (bottom) where the frame rates

of the camera and the projector are synchronized, so the

camera capture a perfect exposure of only one pattern.

If the frame rate durations of the camera and the projector

are not matched, then the mixture will change in time.

When such a mismatch is present, various temporal mixing

strategies can be used, but at an increased computation cost.

Considering that frame rates are usually stable in time,

it is easy to devise a way to measure those frame rates

beforehand. Then, it is much easier to take these different

frame rates into account in the matching method. In practice,

when the camera and projector frame rates are similar

enough (i.e. 60 fps and 59.94 fps), the variation in mixture

over a few seconds is negligible. This is our assumption in

this paper’s experiments.

For a global shutter (i.e. progressive) camera, we expect

that a single mix value will be used across the whole camera

image. We could then search for the best mix value and then

proceed to match with that value. On the other hand, for a

rolling shutter camera, the mix changes vertically across the

camera image.

In our method, we will allow one mix value per pixel, so

rolling shutter as well as global shutter camera are supported.

However, we assume that the mix value does not change in

time during the capture. This implies that the frame rates of

the camera and projector are well matched.

First, we must find the two consecutive patterns that are

mixed in the captured images. The Ii image can be mixed

with the previous pattern (i− 1) or the next one (i+ 1), so
we must evaluate both cases. We calculate the error of the

two cases over a few iterations of LSH. The smallest error

indicates which of the two cases (lets call them d = −1 and

d = +1) is the one contributing to the mixture of images.

From now on, we will explore a number of possible

mixtures of patterns i and i + d. For each tested mixture

μ, we will generate a new set of reference images I ′(i) =
μI(i) + (1 − μ)I(i + d). The camera image sequence will

be matched to these reference patterns and any resulting

good match will be kept. In practice, we test the set of

mixtures from 0 to 1, with a step of 0.1. For each pixel,

its final match will be the one with minimal cost over all

these mixtures. This not only provides robustness to the

distribution of mixtures in the image, but provides a simple

estimation of that mixture, as illustrated in Fig. 9.

For this part, matching relies on quadratic codes, because

we want the maximum amount of information for each pixel

to increase the quality of the match. For the same reason,

we also increase the number of iterations of LSH (typically

80 iterations). In the bottom of Fig. 6, the matching result

is provided as a Lookup Table that we obtained after

finding the first image and the mix. As an illustration of

the effectiveness of this approach, we illustrated in Fig. 5

separate results for different mixtures and a rolling shutter

camera. It can be clearly seen that each mixture yields an

associated correct match, and combining these matches will

result in a correct solution. Contrary to [11], the optimal

mixture is obtained without explicitly solving an internal

camera imaging model.

IV. EXPERIMENTS

In this section, we present the experimental evaluation of

our proposed method on real scenes. Since all the current
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Figure 5. Matching obtained for various partial exposures of two
consecutive patterns. In each matching, x and y coordinates are represented
as red and green, respectively. The mixtures illustrated are 0, 0.5, 0.6, and
1.0

Figure 6. Projected patterns on a typical scene, observed by the camera
(top), camera-projector Lookup Table (middle) where red and green repre-
sent x, y positions, and computed mix of successive patterns (bottom). The
mix value changes from top to bottom, indicating a rolling shutter camera.

Figure 7. Average displacements (in pixels) between unsynchronized
matching and synchronized matching (left), and for running twice syn-
chronized matching on the same images (right). The maximum precision
on the right is limited by the number of LSH iterations.
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fps scene N std std ref loss

30 plane 30 0.65 0.22 0.43

60 0.49 0.29 0.20

120 0.49 0.04 0.45

vase 30 0.86 0.23 0.63

60 0.66 0.28 0.38

120 0.35 0.04 0.31

60 plane 30 0.76 0.34 0.42

60 0.55 0.17 0.38

120 0.41 0.09 0.32

vase 30 0.77 0.34 0.43

60 0.55 0.15 0.40

120 0.81 0.08 0.73

Table I
THE STANDARD DEVIATION OF DISPLACEMENTS (IN PIXELS) IN x, y

OBTAINED WITH A DIFFERENT NUMBER OF PATTERNS AND A

DIFFERENT FPS ONTO TWO SCENES. STD REPRESENTS THE STANDARD

DEVIATION OF DIFFERENCES BETWEEN SYNCHRONIZED AND

UNSYNCHRONIZED. STD REF REPRESENTS THE STANDARD DEVIATION

BETWEEN TWO SYNCHRONIZED SCANS. LOSS IS THE DIFFERENCE

BETWEEN THE TWO STANDARD DEVIATIONS.

methods that need to synchronize the projector-camera sys-

tem use structured light, we can’t compare them directly

with our method because we use unstructured light patterns.

So we made synchronized and unsynchronized matches

to assess the accuracy and quality of the unsynchronized

method itself, not the LSH algorithm. We provide results

for different number of patterns, different frame rates, for

two different scenes. The first set of results use quadratic

code and the second set use linear code. The goal of our

method is to make possible a 3D scanner with the simplest

camera-projector hardware possible. For the realization of

all our experiments, we used non-professional hardware.

The projector was an Aaxa HD Pico projector used at its

native resolution of 1280x720 for all scans, both at 30 and

60 fps. Two cameras were used, at different frame rates. A

Logitech C920 webcam was used at 1920x1080 resolution

at 30 fps (its maximum rate) and a GoPro HERO3+ was

used at a resolution of 1920x1080 for scans at 60 fps.

Both cameras are rolling shutter with automatic brightness

adjustment, the so-called auto gain. This type of camera

can cause a problem during a scan because it tries to adapt

to lighting changes throughout the capture. Fortunately,

unstructured light patterns are notorious for their constant

average intensity, so they are well suited for this kind of

camera. Finally, we encountered a problem of flickering

during the experiments. This flicker depends on the light

source observed. Most ordinary projectors will create RGB

color images by presenting the RGB planes one color

after another. When the exposure time is short, a camera

sees these individual color planes as a flicker (the color
wheel effect). It is thus important to ensure that the camera

exposure time is as long as the frame rate will allow ( 1
60 sec

is perfect for most projector).

In our experiments, we projected continuous video loops

of 30, 60 or 120 patterns. For a first set of experiments,

they were projected at 30 fps on two scenes ("plane" and

"vase") and observed at 30 fps by the Logitech camera.

For a second set of experiments, they were projected at 60

fps and observed at 60 fps by the GoPro camera. A final

set of "synchronized" experiments was also performed with

projection at 5 fps, observed from both cameras, to obtain

reference matches for comparison.

The results are provided in Table I.

In order to evaluate only the performance of the syn-

chronization aspect of our method, we compared unsyn-

chronized matchings with synchronized matchings. This

ensures that we do not compare the structured light method

itself, but only the impact of synchronization. The column

"std" indicates the standard deviation in pixels observed

between unsynchronized and synchronized results, in pixels,

in the camera reference frame at 1920x1080 resolution. We

observe deviations of fewer than one pixel in all cases, which

illustrates how well the method works.

However, since the matching algorithm is probabilistic

(LSH), its solution varies. The column "std ref" measures

this variation by comparing two synchronized matching

obtained on the same captured images. These values, which

are generally very small, constitute the precision limit of

the method (at the selected number of LSH iterations).

This implies that the true loss of precision resulting from

removing synchronization is in column "loss", expressed as

the difference between the deviations of the two columns

"std" and "std ref".

In analyzing those results, one must consider that the

matchings are all computed with integer pixel positions.

This artificially increases the standard deviations when it

is lower than one pixel. A new set of experiments should

be devised eventually to use sub-pixel matching, since the

observed accuracy seems to justify it.

Overall, the results are very good and illustrate that the

loss of precision for our method is minimal.

Typical distributions of matching errors, measured as the

number of different bits between codes, are illustrated in Fig.

7. The curve on the left corresponds to the differences of a

synchronized scan and an unsynchronized one. The curve

on the right corresponds to comparing two synchronized

scans run on the same captured images. We observe that the

distributions are approximately normal with a larger standard

deviation for unsynchronized matching, as expected.

For the latest experiments, we used the same sets of

patterns and captured images (60 and 120 patterns projected

onto a "plane") to generate the Lookup Table using a

linear code. Fig. 8 illustrates the errors distribution for a

synchronized and an unsynchronized matching. They are

very similar, indicating that the lack of synchronization does
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Figure 8. Curves representing the probability density of matching errors,
measured in bits, for unsynchronized matching (green) and synchronized
matching (red). These experiments were generated with 60 (top) and 120
(bottom) patterns and matched with a linear code.

not make the matching more difficult.

Notice that the synchronized distributions are binomial,

with n trials corresponding to the linear code-length in

bits (here 60 and 120) and a probability p related to the

capture conditions. The unsynchronized distributions (es-

pecially with 120 bits) are modeled as a mixture of two

binomials, one being the same as the synchronized case, and

one with a slightly larger p which applies for more difficult

mixed exposure cases. Overall, the variation between the two

curves in Fig. 8, synchronized in red and unsynchronized in

green, are small.

One of the goals of our method is to make scanning

faces easier. Scanning in less than two seconds makes this

much easier. Fig. 9 shows the different mix values obtained

while scanning a face, illustrating that the method works

well for these kind of applications. Adding calibration and

sub-pixel accuracy to the matching process, we expect to

obtain excellent 3d models of faces.

V. CONCLUSION

In this article, we presented a novel unsynchronized active

scan method based on an unstructured light framework.

Tested at the limit of current low cost cameras and projec-

tors, at 30 and 60 fps, we obtained results that are extremely

close to what can be obtained with synchronization. We

expect this method to make scanning in some difficult

situations much more feasible, such as scanning human

faces or large objects where the camera is too far from

the projector to be easily synchronized. In the future, it

should be straightforward to add sub-pixel accuracy to the

matching algorithm, make it faster, parallel and fully test

Figure 9. Selected best mix values for a rolling shutter camera. The
mix values range from 0 to 1, corresponding to increasing levels of partial
exposures between consecutive patterns. The image on the top represents
a scan seen by the camera and the image on the bottom by the projector.

its performance on full 3D reconstructions. Also, using a

custom fast projector and industrial camera, it should be

possible to achieve very high capture rates, which could open

new applications.
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