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Abstract

In this paper, we propose to rely only on images to gen-
erate novel views, and recall why modeling of the complete
scene is often too expensive in the context of view interpola-
tion of simple scenes. We investigate ways to achieve view
interpolation by mean of forward and backward mapping
of disparity maps. We present situations in which each one
requires less computations and gives better results. Con-
trary to what we might expect, very simple stereo algorithms
can produce very convincing interpolation despite provid-
ing really bad disparity maps. We propose to explain this
with a probabilistic model of depth discontinuities. We test
this model on synthetic data created to fit real image statis-
tics and compare with images widely used in stereo[13]. In
practice, forward and backward mapping methods can rely
on simple stereo algorithms running in real time, to produce
very good results. A sequence of real images was acquired
to allow accurate comparison of interpolated images, and
standard metrics are used to assess the quality.

1. Introduction

The process of synthesizing novel images of a scene
from a different point of view than the ones given as ref-
erences, is referred to as view interpolation. There exists a
lot of different techniques to achieve such a goal, ranging
from 3D model based rendering to image based rendering.
This work focus on using at least two images of a scene
as the reference views, using standard stereo algorithms to
retrieve depth informations, and generate novel views. We
won’t explore all computer graphics based methods, and no-
tably we won’t compare to methods where full modeling of
the scene is required. Many authors already suggested that
this is not generally the best approach, first because model
rendering is bounded by scene complexity whereas image
interpolation is bounded by image resolution [2], and stor-
age of 3D models can sometimes be too large in the case
of very complex scenes. Secondly it tends to give worst
results because automatic modeling of scene requires con-

cessions to be made in order to make the model coherent
with all views, but when rendered from the point of view
of a virtual camera, it is not necessarily consistent anymore.
We also won’t compare to methods using complex func-
tions describing parts of the scene visible from a point of
view (in particular all methods based on plenoptic functions
[9, 15, 5]), because our work supposes simple scenes for
which much simpler methods can be applied.

Stereo algorithms have to deal with a lot of problems to
accurately recover the disparity information at each pixel.
Most of those problems are caused by the presence of oc-
clusions in the scene, i.e. pixels that correspond to objects
visible in only some of the reference views. In the standard
two cameras stereo setting, depth information at disparity
discontinuities can not be recovered exactly, unless dispar-
ity maps are labeled by hand as in [6]. When more camera
views are available, a visibility scheme can be set to select
only cameras that can see the object[10]. One of the goal of
this work is to show that even if disparity maps obtained by
the algorithm are far from perfect, the image interpolated
is still of great quality. Thus we will use only the simplest
stereo algorithm, that do not handle visibility and occlusion
checks. It is important to recall that our work focuses on
view interpolation in the case of very simple scenes, that is
where reference views are close from each others, and the
angle of view spanned by all reference views is really small.
Other problems stereo algorithms face are texture ambiguity
due to image sampling, or repeated patterns of intensity. In
fact, most of those problems can be solved by incorporating
smoothing between pixels in the cost function.

Most of the applications of view interpolation are in real-
time contexts. This rules out graph cuts or believe propa-
gation algorithms even though they seem to perform best
according to recent reviews by Scharstein and Szeliski[12],
as they are very hard to implement in real time, and even
when efficiently implemented they dot not handle well very
searching over a big disparity range, necessary for telecon-
ferencing applications where objects are most of the time
really close to the references cameras[3]. However , several
other stereo algorithms can be implemented in real-time,
such as direct search and dynamic programming [17]. We
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implemented both of them in this paper for our experiments.

2. Previous work in image interpolation

Chen and Williams[2] presented an approach to produce
interpolated novel views by interpolation of images using
correspondences given by range data for each camera. They
create two maps containing per pixels correspondences for
each pairs of cameras, which are represented as 3D offset
vectors, that are linearly interpolated to produce intermedi-
ate views. We refer to this kind of interpolation algorithm as
forward mapping algorithms, and the authors already men-
tioned that overlapping and holes created by this method are
their major drawbacks. Most of the authors handle holes
by filling them with colors interpolated from the neighbor-
hood. Scharstein [11] explained that using both disparity
maps decreases the number of holes. When disparity maps
are perfect, only holes corresponding to fully occluded pix-
els will remain. Overlapping of pixels are most of the time
eliminated by use of z-buffering or visibility handling.

Backward mapping methods were introduced in the con-
text of image warping by Wolberg [18]. Laveau and
Faugeras [7] proposed a framework in which view interpo-
lation is possible without explicit 3D reconstruction using
backward mapping. Many other authors have however tried
to generate a model of objects to be reconstructed prior to
rendering it from the point of view of the interpolated cam-
era [6], but as we have already mentioned, we intend not to
depend on a prior full 3D reconstruction of the scene.

Stereo vision is not always used to obtain correspon-
dences prior to image interpolation [2, 7, 14]. However,
since it is the main theme of this article, we will focus on
methods using stereo as part of the interpolation process.
Scharstein [11] mentioned that it is important to adapt a
stereo algorithm for the purpose of view synthesis. It has al-
ready been widely said that for view interpolation, it is more
important to obtain good color for the interpolated view
than good disparities [21, 3, 11], and that’s what the stereo
algorithm should focus on. We will try to show that simple
algorithms tend to do this naturally because they are not de-
signed to get the best disparity map, but just find good corre-
spondences. This is important, because it explains why we
will only experiment with the two basic stereo algorithms
direct search (DS) and dynamic programming (DP). Other
authors already explained why very sophisticated algorithm
are not well suited for image interpolation, and especially
in real-time context [3]. An important part of this article
is the applicability of methods for real-time view interpola-
tion, and many authors presented ways of doing real-time
stereo, most of the time on commodity graphics hardware
[19, 17].
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Figure 1. Discontinuity model. An object Front
is at height H above Background. We intend
to estimate the best disparity along each ray
of the Reference image, by projecting onto the
Left and Right images.

3. A probabilistic model of matching near
depth discontinuity

Since depth discontinuities play a major role in image in-
terpolation, it is important to understand better the behavior
of stereo cost functions near discontinuities. We propose
a simple discontinuity model, illustrated in Figure 1, and
an image formation model with image properties similar to
those of real images, to help perform simulations. It is im-
portant to note that a lot of work has already been done on
probabilistic models for stereo and IBR [1, 20], however it
was in the context of using it in an algorithm to improve
its performance. We propose a model to justify why simple
stereo algorithm can produce good results.

The discontinuity model assumes that a flat front object
is observed floating above a background. For a reference
view pixel x, we must compute its best depth d(x) using
two images (left IL and right IR). The cost function for
assigning depth d to pixel x is

c(x, d) = |IL(x+ d(x))− IR(x− d(x))|.

The images are obtained by observing the front and back-
ground objects, which have colors values IF (x) and IB(x)
derived from their own distributions. These intensity dis-
tribution follows a Brownian motion equation in the space
of intensities, with time representing the distance in pixels
from a seed point. The mean intensity Ī and diffusion coef-
ficient σ are specific to the front or background objects. The
reason for using brownian motion is that it best describes
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Figure 2. Synthetic image formation model.
Each image is the left image of a simulated
stereo pair. The two top images feature the
same average intensity value Ī. The two
left images have independent pixel intensi-
ties (σ = ∞) while the two right images have
σ = 3.

how the difference of image intensities on a single object
depends on the distance between them. This is observed in
almost all natural scenes (see bottom of Figure 3). In our
model, two objects (front and back) are each described by
two brownian parameters (Ī , σ), the mean intensity Ī and
the diffusion coefficient σ, to yield two images IF () and
IB() for the front and background respectively.

Notice that if σ is 0, then an image with flat intensity Ī
is obtained; if σ is very high, then pure noise is obtained.
It is thus possible to model all levels of ”local texture ran-
domness” with this simple model. Examples of generated
images are provided in Figure 2.

In the discontinuity model of Figure 1, the front object
has length L, at height H , so we obtain the three image
functions

IM (x) =
{
IF (x) (x ≤ L)
IB(x) otherwise

IL(x) =
{
IF (x−H) (x ≤ L+H)
IB(x) otherwise

IR(x) =
{
IF (x+H) (x ≤ L−H)
IB(x) otherwise

where only IL and IR are available and IM is the image that
is to be interpolated. Notice that if H = 0, the front object
is on the background and all images are the same.

In order to verify if the brownian image formation model

is accurate, we propose to verify that synthetic and real im-
ages follow these properties:

• The intensity similarity between pixels that belong to
different objects is independent.

• The intensity similarity between pixels that belong to
the same object is highly dependent on the pixel sepa-
ration.

We measured these properties in the four synthetic images
of Figure 2, as well as for two real images (teddy and
tsukuba). We computed, for varying pixel distances r be-
tween 1 and 50 the probability density of intensity differ-
ences between pixels. We expect that the distributions will
become wider with increased distance r. Results are illus-
trated in Figure 3. We observe that the real images distribu-
tions (at bottom) match closely the ones of the top two right
images, where the brownian intensity model was used.
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Figure 3. Distributions of local pixel inten-
sity differences (horizontal axis), for varying
distance between pixels (vertical axis). The
top four corresponds to the images of Fig-
ure 2, while the bottom two are for real im-
ages teddy and tsukuba

The cost function of our discontinuity model were com-
puted for the four synthetic images of Figure 2, and are dis-
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Figure 4. Simulation of cost functions near a
discontinuity. The cost functions (horizontal
axes is x, vertical is disparity d) correspond-
ing to the discontinuity model. The results
corresponds to the images of Figure 2. The
lowest cost is black, the highest cost is white.
The absence of iso curve means that the cost
function is flat.

played in Figure 4. The white triangle is the area where the
cost is quite high and where no algorithm would ever pick
a disparity solution. For the two results on the left, the im-
ages had no ”local pixel correlation” and thus featured flat
cost functions. Any disparity can be chosen in those area.
For the two results on the right, the cost functions show a
gradient that favors picking the smallest disparity possible
along the line of occlusion induced by the front object.

Based on these observations, we propose that the lo-
cal pixel correlation observed in real images makes simple
stereo algorithm behave in a more predictable way than ex-
pected and this might explain why they do not break down
at discontinuities but rather go down a slope that links the
closest object to the farthest one. Even if these disparities
are wrong, they are quite adequate for view interpolation.

4. Solving view interpolation using stereo vi-
sion

For the sake of simplicity of this section, we will assume
that the two image are rectified, i.e the epipolar lines are y-
aligned between the two images. However it can easily be
extended to cases where images are not rectified by apply-
ing a simple rectification step to the two images [4, 11]. We
also present algorithms to be applied for each scanlines so
it is independent of the y values of a pixel.

From two images IL and IR, image interpolation aims
at generating images corresponding to viewpoints lying on

the line joining the two views. There are two different ap-
proaches to generate IM , the image of the virtual view that
is to be interpolated. Most mapping problems (rotation,
warping [18]) can be solved using either forward or back-
ward approach, however most of the time backward map-
ping is better suited as pointed out by Lei and Hendriks [8].
In the following subsections, DL and DR refer to disparity
map for the left and right view and DM the one of the inter-
polated view. α is a coefficient that represents the distance
of the virtual camera on the straight line between left and
right cameras. If α = 0, then the virtual camera is the left
camera, and if α = 1, it is the right one.

4.1 Forward mapping

Scharstein [11] described in his thesis, a simple algo-
rithm to produce an image representing the view of a virtual
camera using dense stereo matching. Once disparity maps
for left DL and right DR views have been computed, he
proposes to use each of them to vote disparities in a third
map DM . The algorithm to vote using only the left dis-
parity map uses the following formula at each pixels of the
interpolated image to compute image intensity :

IM (x− αDL(x)) = IL(x)

Figure 5. Glitches due to aliasing when no
real visibility handling is done during votes,
keep smallest disparities (Left) or largest dis-
parities (Right)

This process produces disparity maps where disparity
can be voted at a position that lies between two pixels.
Furthermore, we already know that such maps contains
holes. By using both maps, part of the holes can be filled
out (holes corresponding to partially occluded pixels are
filled out [11]), but a process of visibility has to be carried
out, because several different disparities can be voted at the
same place (also referred to as overlapping [2]). If both
disparity maps are used then the following algorithm can
be used :
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1: for all x do
2: vis(x)← visibility(DL, DR)
3: if vis = left then
4: IM (x− αDL(x)) = IL(x))
5: else if vis = right then
6: IM (x+ (1− α)DR(x)) = IR(x))
7: else
8: IM (x+(1−α)DR(x)) = α IL(x)+(1−α) IR(x)
9: end if

10: end for
The visibility function used here is to be chosen to ex-

press which camera can be used to choose the right color.
Fig. 5 shows that simple rules like choosing the camera that
vote for the smallest or the largest disparities produce halo-
ing (shadow parts of objects are visible because of the dis-
crete nature of voting scheme) or smearing (foreground and
background objects are merged when disparity is wrong)
[11], and serious visibility handling has to be made to get
correct results. Some implementations use the direction of
the camera movement to handle such visibility problem by
voting only in a certain order, thus discarding successive
votes in the same pixels. Finally, after both algorithms (us-
ing one or both disparity maps), remaining holes have to be
filled in some ways.

Figure 6. Disparity maps for the interpo-
lated view obtained by voting with both
groundthruth images(Left), or two computed
disparity maps (Right)

The biggest problem about this method is that it requires
both disparity map to be coherent, that is some sort of
round-trip has to be respected. If the disparity maps used
to vote are really not accurate, gaps are created more of-
ten, and at random position, which create more and more
holes to be filled as shown by Fig. 6, where two disparity
maps are compared, the one obtained by forward mapping
of both groundtruth from the teddy sequence[13], and the
one obtained by forward mapping of disparity maps com-
puted with direct-search. The main advantage of such a
method, is that once the two disparity maps corresponding
to reference views have been calculated, new views can be
generated easily by the previous voting scheme.

4.2 Backward mapping

Backward mapping projects back disparities obtained
from the points of view of a virtual camera located between
two real cameras. The following formula might be use to
do so :

IM (x) = αIL(x+DM (x)) + (1− α)IR(x−DM (x))

Notice that for each pixel of the virtual view IM (x), it is
deprojected in both camera images (IL and IR), and the fi-
nal intensity value is a linear blending of the intensities from
those images. This may seem to give bad results, because
when objects are occluded, the pixels representing them are
expected to be different in both images, since they are not
fully visible. However, this is not the case in practice. The
disparity obtained for each occluded pixel makes this pixel
effectively visible and as such, assigns it a color that is co-
herent between the images, even if it is the wrong color.
Given local texture coherence, this color is probably close
to the real one. The main problem is now to find this dis-
parity map, and the standard algorithm does so using the
following equation to compute a disparity at each pixel of
the virtual view :

DM (x) = arg min
d∈R

f(IL(x− αd), IR(x+ (1− α)d))

in which R is the range of valid disparities to search for and
f is a function of match between two intensity values.

The main disadvantage of this approach is that it requires
the computation of a complete disparity map for each view
to be interpolated, which is more computationally intensive.
Nonetheless, since the search for the best disparity is done
for each pixel of the destination virtual view, it produces
dense disparity map, with no holes to fill. No management
of overlapping is required as well, since only one dispar-
ity is chosen at each pixel. That’s two of the reason why
backward mapping is most of the time best suited for view
interpolation.

4.3 Comparing forward and backward in-
terpolation

In previous sections we presented forward and backward
methods, each with its strengths and weaknesses. Another
way to compare them is with regard to the context of the
interpolation. For example, we mentionned that forward
mapping requires the calculation of disparity maps for both
(or more) reference views only once, and then any view
can be interpolated almost instantaneously by a simple vot-
ing scheme. However, in a context where reference views
are always changing, like teleconferencing or any real-time
view interpolation from live camera feeds, forward mapping
still requires those maps to be computed, but this time once
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every frame! So in this context, it becomes more costly to
use forward mapping, because backward mapping requires
a single disparity map computation from the point of view
the interpolated camera.

In remote view interpolation appliquations, the reference
images are sent to a distant client over a network, where it is
then interpolated locally by the client. This is typical of web
based virtual navigation of real environment. In this case,
forward mapping requires that additional disparity data is
sent together with the image data, thus increasing the band-
width required. On the other end, backward mapping can
accomodate the image stream without additional informa-
tion and relieves the image provider from running any stereo
at all.

5. Experiments

In this section, we intend to compare both forward (FM)
and backward mapping (BM) for both simple stereo algo-
rithm we presented (DS and DP). Determining which in-
terpolation method yields better results is not as easy as
directly comparing the interpolation image computed by
those methods. Szeliski [16] said that a perceptually-based
metric should be used to account for the quality of an inter-
polated image. It has also been reported that using a metric
that estimates the quality of a whole interpolated sequence
instead of a single image would be ideal [11]. However, no
real metric has already been proposed to do so, and that’s
why we used RMS and T, defined in [12] as :

RMS =

 1

N

∑
(x,y)

(I(x, y)− Î(x, y))2

1/2

T =
1

N

∑
(x,y)

(|I(x, y)− Î(x, y)| > δ)

where I(x, y) is the color intensity of a pixel in the real
image, Î(x, y) is the color intensity of a pixel in the inter-
polated image, N is the total number of pixels, and δ is a
threshold (equal to 15 in our experiments). These measures
will compare our interpolated frames with the groundtruth.

We made a sequence of a scene filmed by a camera trans-
lated on a rail to produce perfectly aligned data. We took a
frame at every millimeter of camera displacement, in order
to provide groundtruth frames to compare with. Notice that
Szeliski and Scharstein [12] proposed to assess the quality
of a depth map generated by a stereo algorithm by gener-
ating novel views corresponding to groundtruth data, and
to estimate the relative error. We did not do this because
we already mentioned that for view interpolation, disparity
errors do not necessary create big errors in the generated
novel views, and there are in fact a lot of different disparity
maps that can generate the exact same groundtruth frame
(especially in textureless areas). As a matter of fact, we do

not think that comparing the disparity map generated for the
novel view to the groundtruth disparity map (if present) is
relevent, as it is not necessarily a good measure of how good
the interpolation will be.

Direct search (DS) and dynamic programming (DP) have
already been implemented for real time performance by pre-
vious authors [19, 17] but not necessarly in the context of
view interpolation. For images of size 320 × 240 with
32 disparity levels, we acheive 25 interpolated images per
second on backward mapping with dynamic programming,
while direct search acheives 85 interpolated images per sec-
ond. Forward mapping run as fast as the user wants it to.
The hardware used was a NVIDIA GeForce 7400 graph-
ics card, installed on a laptop featuring an Intel CoreDuo
1.83Ghz.

We made two experiments. The first one features two
images separated by a baseline of 30mm, as illustrated in
Fig. 7, and interpolated a frame at each millimeters, for
which groundtruth is available. For the second experiment,
the baseline test, a single frame is interpolated for a suc-
cession of larger and larger baselines, while remaining at
the exact middle between the two reference views. The
groundtruth is available for that frame.

Figure 7. Two images from the labo sequence
used for our tests.

5.1 Interpolation experiment

Fig. 8 presents the results we obtained during the first ex-
periment, comparing the RMS measure for combination of
both DS and DP with FM and BM. For comparison, we also
include for this experience the results of the previous met-
rics for the dissolve algorithm (D) which is simply a fade
between both images (same as interpolating with a dispar-
ity map where all objects are at infinity). It corresponds in
our opinion to the worst case interpolation algorithm, so it
defines a limit to the error any interpolation method should
do. D performs worst than every method, which is hope-
fully good news. We measured the performance on other
sequences, and obtained the results of Fig. 9, where the
naive D algorithm was removed to help differenciate the
four other algorithms. Also, the T-values were removed
since they yield about the same results than RMS.
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In both results, it is clear that BM-DP performs best
for every sequence, regardless of the metric used. FM-DP
gives also most of the time good results (second best in all
cases). Direct search (DS) gives about the same results with
backward (BM) or forward (FM) mapping, even though we
would have thought that BM would always be better than
FM. This can easily be explained by the fact that the DS
algorithm is easily corrupted by local ambiguity in repeti-
tive texture which creates noisy results. These noisy results
give about the same poor metric values, regardless of the
mapping method used.
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Figure 8. (Left) From bottom to top : RMS
values for BM-DP, FM-DP, BM-DS, FM-DS, D.
(Right) From bottom to top : T values for BM-
DP, FM-DP, BM-DS, FM-DS, D.
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Figure 9. From bottom to top : RMS values
for BM-DP, FM-DP, FM-DS, BM-DS in frames
260-290 (Left) and 340-370 (Right)

5.2 Baseline experiment

For the second experiment, we picked a single frame and
interpolated it from two reference views equally separated
around it, for increasing baseline values. In our opinion,
increasing the baseline test well the robustness of an inter-
polation algorithm and provide a direct measure of it use-
fullness. An algorithm that performs well at large baselines
requires less images of an environement to provide the same
interpolated experience. In practice, we picked a frame at
100mm which was then interpolated from reference views
at 100 ± k mm, with 1 ≤ k ≤ 30. At 30mm, the disparity
range is becoming too large to be solved in real-time. We
also tested frames at 200mm and 300mm.

The results are presented in Fig. 10, where we plotted the
RMS values for each combination of algorithm and map-
ping method. Those results confirm the previous one, in
the sense that DP-BM always gives better results whatever
the baseline and the order is approximately the same for the
rest of the methods. However, we thought that DP would
be much less sensitive to baseline variation than DS since
it enforces smoothness. This is not the case as we see the
curves all increasing at about the same rate.
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Figure 10. From bottom to top : RMS values
for BM-DP, FM-DP, BM-DS, FM-DS for interpo-
lation with frame 100 (Left), 200 (Middle), 300
(Right) chosen as virtual view, and for grow-
ing values of baselines.

In order to test the stability of the interpolated image
as we increase the baseline, we compared interpolated im-
ages for successive baseline values rather than with the
groundtruth. Fig. 11 is a plot of errors between succes-
sive frames, showing that FM is less stable than BM. How-
ever, the situation for FM is even worse. In fact, not only
the error between successive frames is higher, but it is dis-
tributed mostly around the edge (bottom left of Fig. 11)
while BM distributes the error almost uniformly (bottom
right of Fig. 11). This does not show up in the RMS values,
but it is very perceptible visually. This confirms the need
for a better metric for perceptual comparison of interpola-
tion results.
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Figure 11. (left) Plot of RMS difference be-
tween interpolated frame with successive
baseline, (middle) image difference between
two interpolated frame for successive base-
lines with FM, (right) and BM (black means
more error).
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6. Conclusion

We compared combination of both mapping methods
and stereo algorithms to produce convincing view interpo-
lation. The results show that the backward mapping always
give better results than the forward mapping. This may of
course be because we did not implement serious visibility
handling (part of this work was to show that backward map-
ping can generate very good results without occlusion nor
visibility handling), but then again, it would have required
better stereo algorithms to generate more accurate dispar-
ity maps to vote from. It has been made clear that in some
cases, forward mapping is really convenient because of its
computational simplicity, but it leaves difficult problems to
solve. We presented a probabilistic model that can explain
why even very naive stereo algorithms can gives good in-
terpolation. It does not however prevent stereo algorithm
to be fooled by texture ambiguity and such, and that’s why
more elaborate stereo method may perform better. We gen-
erated interpolated images corresponding to virtual cameras
for which we have the groundtruth images. Metrics used
for our experiments do not necessary agree with what the
perceptual judgement of a human might have. Perceptually
based metric are still required to assess quality of sequences
of interpolated images. Finally we hope in the future to fur-
ther improve the results obtained with dynamic program-
ming which from our point of view is the most simple yet
effective algorithm to use for view interpolation. We think
that in context of static content to be interpolated, we could
preprocess datas to incorporate informations that could help
the dynamic programming process to produce even better
interpolation, still in real time.

References

[1] P. Belhumeur. A bayesian-approach to binocular stereopsis.
Int. J. Computer Vision, 19(3):237–260, August 1996.

[2] S. E. Chen and L. Williams. View interpolation for im-
age synthesis. Computer Graphics, 27(Annual Conference
Series):279–288, 1993.

[3] A. Criminisi, J. Shotton, A. Blake, and P. Torr. Gaze manip-
ulation for oneto -one teleconferencing, 2003.

[4] A. Fusiello, E. Trucco, and A. Verri. A compact algo-
rithm for rectification of stereo pairs. Mach. Vision Appl.,
12(1):16–22, 2000.

[5] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The
lumigraph. In SIGGraph-96, pages 43–54, 1996.

[6] T. Kanade, P. Rander, S. Vedula, and H. Saito. Virtualized
reality: Digitizing a 3d time-varying event as is and in real
time. In H. T. Yuichi Ohta, editor, Mixed Reality, Merg-
ing Real and Virtual Worlds, pages 41–57. Springer-Verlag,
1999.

[7] S. Laveau and O. Faugeras. 3-D scene representation as a
collection of images and fundamental matrices. Technical
Report RR-2205.

[8] B. J. Lei and E. A. Hendriks. Real-time multi-step view re-
construction for a virtual teleconference system. EURASIP
J. Appl. Signal Process., 2002(1):1067–1087, 2002.

[9] L. McMillan and G. Bishop. Plenoptic modeling: an image-
based rendering system. In SIGGRAPH ’95: Proceedings
of the 22nd annual conference on Computer graphics and
interactive techniques, pages 39–46, New York, NY, USA,
1995. ACM.

[10] Y. Nakamura, T. Matsuura, K. Satoh, and Y. Ohta. Occlu-
sion detectable stereo – occlusion patterns in camera matrix.
In CVPR ’96: Proceedings of the 1996 Conference on Com-
puter Vision and Pattern Recognition (CVPR ’96), page 371,
Washington, DC, USA, 1996. IEEE Computer Society.

[11] D. Scharstein. View synthesis using stereo vision. PhD the-
sis, Ithaca, NY, USA, 1997.

[12] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int.
J. Comput. Vision, 47(1-3):7–42, 2002.

[13] D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. pages I: 195–202, 2003.

[14] S. M. Seitz and C. R. Dyer. Physically-Valid View Synthesis
by Image Interpolation. In Proc. Workshop on Representa-
tion of Visual Scenes. IEEE Computer Society Press, June
1995.

[15] H.-Y. Shum and L.-W. He. Rendering with concentric mo-
saics. In SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 299–306, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[16] R. Szeliski. Prediction error as a quality metric for motion
and stereo. In ICCV ’99: Proceedings of the International
Conference on Computer Vision-Volume 2, page 781, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[17] L. Wang, M. Liao, M. Gong, R. Yang, and D. Nister. High-
quality real-time stereo using adaptive cost aggregation and
dynamic programming. In 3DPVT ’06: Proceedings of the
Third International Symposium on 3D Data Processing, Vi-
sualization, and Transmission (3DPVT’06), pages 798–805,
Washington, DC, USA, 2006. IEEE Computer Society.

[18] G. Wolberg. Digital Image Warping. IEEE Press, July 1990.
[19] R. Yang and M. Pollefeys. Multi-resolution real-time stereo

on commodity graphics hardware, 2003.
[20] A. Zisserman, Y. Wexler, and A. Fitzgibbon. Image-based

rendering using image-based priors. pages 1176–1183,
2003.

[21] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using
a layered representation. In SIGGRAPH ’04: ACM SIG-
GRAPH 2004 Papers, pages 600–608, New York, NY, USA,
2004. ACM.

Proceedings of 3DPVT'08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission

June 18 - 20, 2008, Georgia Institute of Technology, Atlanta, GA, USA


