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aABSTRACTWe present an appli
ation of graph 
uts to Bayesianemission tomography (ET) re
onstru
tion. Themethod is built on the expe
tation-maximization (EM)maximum a posteriori (MAP) re
onstru
tion. In gen-eral, MAP estimates are hard to assess. For instan
e,methods su
h as simulated annealing 
annot be em-ployed, be
ause of the 
omputational 
omplexity ofbayesian ET re
onstru
tion. We propose to performa part of the M-step by a maximum-
ow 
omputationin a parti
ular 
ow graph. Be
ause the possible pri-ors (in a maximum-
ow approa
h) are limited to linearfun
tion, we have in
orporated the estimation of a linepro
ess that will preserve dis
ontinuities in the re
on-stru
tions. It is the iterative nature of EM that allowsthe introdu
tion of the line pro
ess. The method isillustrated �rst over syntheti
 data and then over theHo�man brain. 1. INTRODUCTIONMany image restoration algorithms are based on sta-tisti
al models. The key to su

essfully use these algo-rithms resides in 
onstru
ting a suitable model of thedegradation (likelihood). However, the model must beregularized to alleviate over�tting and pro
ess outliers.One natural way to a
hieve this is to in
orporate priorinformation about the desired restoration. This 
anbe easily done in a Bayesian framework. For instan
e,Geman and Geman [3℄ proposed to in
orporate priorinformation about the 
orrelation of neighboring pixelsin the image, using Gibbs distribution. A labelling ofthe image is then obtained by 
omputing the maximuma posteriori (MAP) estimate.Unfortunately, the MAP estimate of an image 
an-not usully be 
omputed eÆ
iently. Many methodshave been proposed to �nd the MAP estimate or anapproximation of it. Simulated annealing [3℄ 
an, intheory, 
ompute the MAP estimate, but it is not al-ways 
omputationally pra
ti
al. Iterated 
onditional

modes (ICM) developed by Besag [1℄ and gradient de-s
ent te
hniques (in the 
ase of 
ontinuous labelling)are methods that do not guarantee 
onvergen
e to aglobal optimum.Re
ent developments were done in graph formula-tion of MAP estimate and related energy minimizationproblems [2, 7, 8, 10℄. All these algorithms are basedon the 
omputation of maximum-
ow and the relatedminimum-
ut in a spe
i�
 type of 
ow graph. They 
anbe split into two 
ategories. In the �rst, the graph for-mulation provides an eÆ
ient method for 
omputingthe exa
t global optimum [7, 8, 10℄. However, thesealgorithms are limited to linear prior (linear 
lique po-tential) whi
h 
an oversmooth boundaries, with the ex-
eption of [7℄ whi
h is limited to binary images. These
ond 
ategory 
onsists of fast approximation via ap-proximated multi-way 
ut formulation [2℄. One majorlimitation of this formulation is the restri
tion of theprior to Pott's model (unordered labelling).In this paper, we propose an original appli
ation ofa maximum-
ow method to 
ompute the maximizationstep in the Expe
tation-Maximization Bayesian emis-sion tomography (ET) re
onstru
tion. The approa
h isbased on the 
omputation of the maximum-
ow and re-lated minimum-
ut in a graph similar to [2, 8, 10℄. Be-
ause the maximum-
ow approa
h is limited to the useof linear prior, we show how to in
orporate a line pro-
ess, that preserves dis
ontinuities, in the iterative EMs
heme. The line pro
ess is 
losely related to the in-trodu
tion of 
ontextual information that are obtainedfrom a previous iteration of the EM algorithm.After a general des
ription of the Bayesian frame-work, We will present the des
ription of our optimiza-tion method based on graph 
ut. We then provide anappli
ation to Bayesian ET image re
onstru
tion. Inthis appli
ation, methods su
h as simulated annealingare pre
luded be
ause of the size of the 
al
ulation.We provide a statisti
al model based on the seminalwork of Shepp and Vardi [11℄ on maximum likelihoodre
onstru
tion for emission tomography and provide



Bayesian formulation similar to Green [6℄ and Gemanand M
Clure [4℄, with a di�erent prior.2. BAYESIAN FRAMEWORKFor the purpose of the analysis, the image spa
e is rep-resented by a regular array of pixels indexed by i, wherei 2 S = f0; : : : ; N�1g. We also need to de�ne a neigh-borhood system N = fNi j i 2 Sg. Typi
ally, N is the8-neighbors system. The restoration is formulated asa labelling problem. The restored image 
orrespondsto a 
on�guration f = ffi j i 2 Sg taking dis
retevalues in the set of labels L = f0; : : : ;M � 1g. To en-for
e pie
ewise smoothness, we introdu
e an unobserv-able line pro
ess l, taking dis
rete values in f0; 1gM ,into the image model to preserve dis
ontinuities in therestoration [3℄. For instan
e lii0 = 1 if there is a dis
on-tinuity between i and i0. Let's formulate our restorationproblem from the Bayes theorem:Pr(f; l j x) / Pr(x j f; l) Pr(f; l);where f is a 
on�guration, l the line pro
ess and x isthe observation. We are interested to estimate the 
on-�guration f̂ that maximizes the posterior probabilityPr(f; l j x),f̂ = argmaxf Pr(f; l j x)= argmaxf Pr(x j f) Pr(f; l):This last equation 
omes from the fa
t that x is 
ondi-tionally (given f) independent of l. For the purpose ofoptimization, we reformulate everything into an energyminimization problem; the likelihood and prior energyare Elikelihood(x j f) = � logPr(x j f);Eprior(f; l) = � logPr(f; l): (1)Thus, the MAP estimate is obtained by minimizing thefollowing posterior energy,E(f; l j x) = Elikelihood(x j f) + Eprior(f; l): (2)2.1. Sele
ting a priorThe prior is 
onstru
ted as a Gibbs distribution and isspe
i�ed by an energy fun
tion,Pr(f; l) = e�Eprior(f;l)Z ;where Z is a normalizing 
onstant, 
alled the partitionfun
tion. The energy fun
tion Eprior(f; l) is the prior
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Figure 1: Geometri
al model s
heme employed forET. The grid 
orresponds to the image spa
e S. Thegrey re
tangle 
orresponds to the portion of the im-age viewed by some bin t 2 B. The portion of pixeli viewed by bin t is ati and is outlined in dark grey.energy and it is designed so that the expe
ted 
on�g-urations are those for whi
h typi
al neighboring pixelshave similar labels. Moreover, we 
hoose a prior thatfavors pie
ewise 
onstant re
onstru
tions and that pre-serves dis
ontinuities. All these are lo
al 
onstraintsthat 
an be 
onveniently modeled by a lo
al 
omposedfun
tion of f and l,Eprior(f; l) = Xi2S Xi02Ni � �(fi � fi0) (1� lii0)+Xi2S Xi02Ni � lii0 ; (3)where � and � are positive 
onstants and the fun
-tion �(u) is nonnegative, even, monotoni
ally in
reas-ing and minimized at u = 0. The 
hoi
e of � is made inorder to a
hieved the desired properties of the 
on�gu-ration. It must re
e
t some qualitative features aboutthe desired restoration. One feature is smoothnesswithin homogeneous regions of the image. Some ob-vious 
hoi
es are �(u) = juj and �(u) = u2. The 
hoi
eof �nding the exa
t MAP estimate by a maximum-
owapproa
h limits our 
hoi
e to �(u) = juj. At dis
on-tinuities (natural boundaries) the energy potential ofpixel i,Pi02Ni � �(fi � fi0) tends to be high and makesboundaries oversmoothed. To 
orre
t this problem, wehave in
orporated a dis
rete line pro
ess l. This way,the 
hosen prior will favor smoothness ex
ept when adis
ontinuity o

urs.



2.2. Statisti
al model for ETIn ET, the image re
onstru
tion task 
onsists in re-
overing emitter densities from a sinogram (proje
tiondata1). To a

omplish this, we must 
onstru
t a modelof the image spa
e S and of the degradation that o
-
urs in the observation (proje
tion data). The pro-je
tion data are indexed by t 2 B = f0; : : : ; Tg, whereT = number of angles�number of bins. In �gure 1, wesee a s
hemati
 representation of our geometri
al modelfor ET. The degradation model assumes the emissionfrom pixel i to be 
ompletely random. Therefore, thenumber of photons emitted from i and dete
ted in bint forms independent Poisson pro
esses in i and t, be-
ause ea
h photon is dete
ted by at most one bin andthe emissions are independent. Be
ause the proje
tiondata are the superposition of independent Poisson pro-
esses, it follows that xt, a proje
tion data, is indepen-dent Poisson distributed random variables,xt � Poisson Xi2S atifi! : (4)As a result, the likelihood, whi
h is the probability ofthe observation (proje
tion data) knowing the emitterdensity, is de�ned as,Pr(x j f) =Yt2B �Pi2S atifi�xt exp ��Pi2S atifi�xt! :In this model, the 
oeÆ
ients ati represent the prob-ability that ea
h emission from pixel i is dete
ted indete
tor t (see �gure 1). They are assumed knownand they model the geometry of the dete
tion system.Other major physi
al fa
tors in ET, su
h as attenua-tion and s
atter, 
an also be in
luded in ati.Instead of 
onsidering the model of equation (4), itis easier for 
omputational reasons, to treat it as anin
omplete data problem. In fa
t, it is more dire
t toestimate f if the unobserved data zti (the number ofphotons emitted from pixel i and re
orded in bin t) isknown. Sin
e an estimate of f allows the distributionof the missing data z to be easily spe
i�ed, this sug-gests the use of an EM iterative s
heme. Iteratively, weperform su

essive estimations of z (E-step) and MAPestimates of f a

ording to the posterior distributionPr(f j z) (M-step). Noti
e that the Poisson model stillholds for the missing data z, so we havezti � Poisson (atifi) :1We prefer the term proje
tion data to sinogram, be
ause thea
tion of dete
ting in bin t an emitted photon from pixel i issimilar to a proje
tion.

Pro
edure MAP EM Algorithm(x : proje
tion data)f̂ := some initial 
on�gurationRepeat266664 update the 
omplete data za

ording to equation (7) � (E-step)l̂ = argminl E(f̂ ; l j z)f̂ = argminf E(f; l̂ j z) � (M-step)Until 
onvergen
eFigure 2: Pseudo-
ode MAP EM algorithm. Ea
hrepeat loop is 
onsidered to be an iteration.and the likelihood 
an be restated asPr(z j f) = Yi2S; t2B (atifi)zt exp (�atifi)zt! : (5)The 
orresponding likelihood energy is de�ned byElikelihood(z j f) =Xi Xt (atifi � zti log(atifi)) + 
onstant:(6)As shown in [6, 9℄, we 
an estimate (E-step) the miss-ing data zti by setting it to its 
onditional expe
tationgiven x and f̂ : ẑti = E(zti j x; f̂)= xt ati f̂iPi02S ati0 f̂i0 ; (7)where f̂ stands for the previous iteration estimate of f .Finally, the M-step 
onsists in minimizing the posteriorenergy for f and l,E(f; l j ẑ) = Elikelihood(ẑ j f) + Eprior(f; l)= Xi2SXt2B atifi � ẑti log(atifi) +Xi2S Xi02Ni � jfi � fi0 j(1� lii0 ) +Xi2S Xi02Ni � lii0 + 
onstant: (8)3. MINIMIZING THE POSTERIOR ENERGYWe are interested to 
hoose (f̂ ; l̂) that minimizes theposterior energy (8), sin
e MAP estimates are diÆ
ultto 
ompute in general, we propose a deterministi
 al-gorithm whi
h is similar to ICM, but di�ers in the way



it updates the 
omponents fi of a 
on�guration f allat the same time. The algorithm (shown in �gure 2)starts with an initial labelling f̂ (0) (typi
ally a maxi-mum likelihood estimation is used). Iteratively (like inICM), we �rst update the line pro
ess while keeping ffrozen to f̂ (n�1) (in equation (8)),l̂(n) = argminl E(f̂ (n�1); l j ẑ):Noti
e, that the energy is minimized by settingl̂(n)ii0 = � 0; Pi02Ni jf̂ (n�1)i � f̂ (n�1)i0 j � �=�1; otherwise:It remains to minimize over f . We update the linepro
ess to l̂(n) in equation (8) and then we determinef̂ (n) that minimizesE(f; l̂(n) j ẑ) = Xi2SXt2B atifi � ẑti log(atifi)+ Xi2S Xi02Ni�ii0 jfi � fi0 j+ 
onstant; (9)where �ii0 = � 0; l̂(n)ii0 = 1�; otherwise; (10)is introdu
ed to better �t our graph formulation of thenext se
tion. This minimization 
an be solve globallyfor f by 
omputing the minimum-
ut in a parti
ular
ow graph [2, 8, 10℄. In the next se
tion we des
ribe the
ow graph 
onstru
tion and explain how the minimum
ut gives the desired 
on�guration.3.1. Flow graphLet G = (V ; E) be a 
ow graph (see �gure 3), where Vis the set of verti
es and E is the set of weighted edges.The set V is 
omposed of two types of verti
es: a set of
on�guration nodes and two distin
t terminals 
alledthe sour
e s and the sink t,V = V 0 [ fs; tg;where V 0 = f(i; k) : i 2 S; k 2 Lg is the set of nodes
orresponding to all possible assignments. The stru
-ture of the nodes and 
onne
tions in the 
ow graphG are illustrated in �gure 3 for a 2-neighbor systemN . Two types of edges 
ompose E , likelihood edgesElikelihood and prior edges Eprior. The set of likelihoodedges generates paths from the sour
e to the sink,s! (i; 0)! � � � ! (i; k)! � � � ! (i;M)! t;
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ut, 
omposed of thethi
k edges, separates the graph into two parts (ingrey), one linked to the sour
e s (bla
k nodes) andthe other to the sink t (white nodes). The outgo-ing edges from the sour
e have in�nite 
apa
ities.A likelihood edge assigning label k to pixel i has 
a-pa
ity 
ap(i; k) while its 
orresponding inverse edgehas large 
onstant 
apa
ity K. The prior edges have
apa
ity �ii0 . Here, label 0 is assigned to pixels iand i00, and label 2 is assigned to pixel i0, yeildingthe 
on�guration of emitter densities f = f0; 0; 2g.The dis
ontinuity between pixels i and i0 is revealedby the two prior edges in the 
ut, indu
ing a penalty
ost �ii0 j0� 2j.



for all i 2 S. Outgoing edges from the sour
e shave in�nite 
apa
ity to insure they 
an never be sat-urated. All other likelihood edges (i; k)� (i; k+ 1) areassigned the 
apa
ity 
ap(i; k) su
h that 
ap(i; k) =Pt2B atik � ẑti log(atik) while the 
orresponding in-verse edges (i; k + 1)� (i; k) are given the 
apa
ity K,where K is 
hoosen to be a large �nite 
onstant2. Thislarge value is required to insure that su
h edges arenever satured, therefore avoiding the possibility of mul-tiple solutions to the labelling problem [2, 8℄. The othertype of edges present in the graph, prior edges Eprior,is de�ned by the neighborhood system employed (N )and generates 
onne
tions between assignments (i; k)and (i0; k) if i0 2 Ni for all i 2 S. The 
apa
ity of prioredges is set to �ii0 of equation (10).A 
ut C � E is a set of edges su
h that the sour
e sand the sink t are separated in the indu
ed graph GC =(V ; E � C). In short, the 
ut C 
ontains at least oneedge of every path from the sour
e s to the sink t. The
apa
ity (
ost) of a 
ut is simply the sum of the edge
apa
ities in C. We denote the 
ost of a 
ut as jCj. Thekey part of our algorithm is based on the 
omputationof the minimum 
ost 
ut C. Its 
omputation is a
hievedeÆ
iently by 
omputing the maximum 
ow betweenthe sour
e and the sink. We have 
hosen Golberg'spre
ow push relabel algorithm [5℄, whi
h in our 
asefeatures an almost linear average 
omplexity.As shown in [2, 8℄ for similar, but di�erent 
ow graphformulations, the 
ost of the minimum 
ut jCj 
orre-sponds to the global optimum of equation (9). Be
ausethe 
ost of a 
ut is given by the summation of the edgesit 
ontains, the optimal 
on�guration is provided by thelikelihood edges 
ontained in the minimum 
ut C. Inbrief, 
utting a likelihood edge (i; k)� (i; k + 1) 
orre-sponds to assign label k to pixel i.4. EXPERIMENTS AND RESULTSIn this se
tion, we 
ompare the performan
es of ourmethod to maximum likelihood EM re
onstru
tion andalso to the standard ICM Bayesian ET re
onstru
tion.Experiments are done on 2D syntheti
 data (�gure 4)and over the Ho�man brain phantom (�gure 5). Theset of labels L = f0; : : : ; 255g represents normalizedphoton 
ounts.4.1. Ellipti
 phantomThe image spa
e S is a regular grid of 64 � 64 pixels(�gure 4). We performed 64 proje
tion angles over 180Æand used 64 dete
tor bins for ea
h proje
tion. The bin2For k = M � 1, the likelihood edge is (i; k)� t and there isno inverse edge (see �gure 3).

(a) (b)

(c) (d)

(e) (f)Figure 4: (a) Ground truth image. (b) A noisy pro-je
tion data obtained from the noiseless proje
tions,where the horizontal and verti
al axes 
orrespond tothe angles and bins respe
tively. (
) Maximum likeli-hood EM re
onstru
tion obtained after 20 iterationsof the algorithm. The normalized posterior energyis 2924.0 and the RMS error is 26.4. (d) ICM MAPEM re
onstru
tion with � = 10:0 and � = 2:0. Thenormalized posterior energy is 66.4 and the RMSerror is 12.4. (e) Maximum-
ow MAP EM re
on-stru
tion with � = 0:0 and � = 2:0. The normal-ized posterior energy is 77.6 and the RMS error is16.0. (f) Maximum-
ow MAP EM re
onstru
tionwith � = 10:0 and � = 2:0. The normalized posteriorenergy is 34.2 and the RMS error is 11.4.



(a) (b)

(c) (d)Figure 5: (a) Sinogram of the Ho�man brain witha
tivity ratios of 4:1:0 for grey matter, white mat-ter and CSF, respe
tively. (b) Maximum-
ow MAPEM re
onstru
tion with � = 2:0 and � = 10:0. (
)Maximum-
owMAP EM re
onstru
tion with � = 2:5and � = 10:0. (d) Maximum-
ow MAP EM re
on-stru
tion with � = 3:0 and � = 10:0.
and pixel width are the same. Finally, we simply addPoisson noise to ea
h proje
tion, using the noiselessproje
tion values as the Poisson parameter. The phan-tom used and the noisy proje
tion data are shown in�gure 4 (a) and (b), respe
tively. In �gure 4 (
), we seethe noisy result obtained from the standard maximumlikelihood EM re
onstru
tion method. This image wasgenerated by setting �ii0 = 0 in equation (9) and thenafter running 20 iterations of the algorithm shown in�gure 2 (starting with a 
at labelling as initial valuefor f̂). The RMS error between the original phantoman the re
onstru
tion is 26:4. The image in �gure 4(d) 
orresponds to an ICM re
onstru
tion with param-eter � = 2:0 and � = 10:0. The RMS error for theICM re
onstru
tion redu
es to 12.4. Finally, in �gure4 (e) and (f), we present the re
onstru
tions obtainedwith the maximum 
ow approa
h, one with parame-ter � = 2:0 and � = 0:0 and the other for � = 2:0and � = 10:0. The RMS errors are 16.0 and 11.4, re-spe
tively. To 
ompute the posterior energy of thesere
onstru
tions, we have set the 
omplete data (z) ofequation (9) to a 
at image and the parameter were set

to � = 10:0 and � = 2:0. The normalized 3posteriorenergy obtained are for the re
onstru
tion in �gure 4(
) 2924.0, (d) 66.4, (e) 77.6 and (f) 34.2.4.2. Ho�man brainThe Ho�man brain image spa
e S is a regular grid of128� 128 pixels (see �gure 5). The ratios of a
tivitiesin the Ho�man brain are 4:1:0 for grey matter, whitematter and 
erebrospinal 
uid (CSF), respe
tively. 128proje
tion angles over 180Æ were performed, using 128dete
tor bins for ea
h proje
tion. The bin and pixelsize are the same. Finally, Poisson noise was added tothe sinogram (proje
tion data) to simulate the degra-dation. In �gure 5 we see the noisy sinogram (a) andthree re
onstru
tions obtained by the maximum-
owMAP EM algorithm: (b) with � = 10:0 and � = 2:0,(
) with � = 10:0 and � = 2:5 and �nally (d) with� = 10:0 and � = 3:0.5. DISCUSSION AND CONCLUSIONWe have presented a robust method based on graph
uts to 
ompute Bayesian ET re
onstru
tion using sim-ple priors. The method showed great improvement overthe maximum likelihood EM re
onstru
tion by redu
-ing the RMS error by 56:7%. It has also shown bet-ter results than ICM with redu
tion of 8:1% of theRMS error. With the maximum 
ow EM re
onstru
-tion method, 
at regions within the images are almostperfe
tly re
overed. However, if the line pro
ess is notused, as in �gure 4 (e), the re
onstru
tion does notbehave as well as it looks (an in
rease in energy andRMS error). This problem happens when smoothingis done a
ross adja
ent regions (over boundaries) usinga non-boundary preserving smoothing fun
tion su
h as�(u) = juj. This problem was solved by introdu
inga line pro
ess in the iterative MAP-EM s
heme. Thispro
ess allows the introdu
tion of 
ontextual informa-tion and it 
ould be improved by adding more infor-mation about boundaries, su
h as anatomi
al 
lassi�-
ation of brain tissue. The uses of a 
ontinuous linepro
ess estimated from a robust estimator, su
h as thetrun
ated quadrati
 fun
tion 
ould redu
e some arte-fa
t 
reated by the dis
reteness of the line pro
ess andthe fa
t that they \freeze" while we optimize over f .Even if the form of the prior is limited, our methodis of great utility, be
ause the 
omplexity of ET pre-
ludes the use of te
hniques su
h as simulated anneal-ing. Therefore, the energy fun
tion has to be min-imized by some deterministi
 method. With other3Translation and s
aling with respe
t to the energy of theground truth.



methods there are no guarantee to rea
h a global opti-mum, but just hope to es
ape a poor lo
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