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ABSTRACT
We present an application of graph cuts to Bayesian
emission tomography (ET) reconstruction. The

method is built on the expectation-maximization (EM)
maximum a posteriori (MAP) reconstruction. In gen-
eral, MAP estimates are hard to assess. For instance,
methods such as simulated annealing cannot be em-
ployed, because of the computational complexity of
bayesian ET reconstruction. We propose to perform
a part of the M-step by a maximum-flow computation
in a particular flow graph. Because the possible pri-
ors (in a maximum-flow approach) are limited to linear
function, we have incorporated the estimation of a line
process that will preserve discontinuities in the recon-
structions. It is the iterative nature of EM that allows
the introduction of the line process. The method is
illustrated first over synthetic data and then over the
Hoffman brain.

1. INTRODUCTION

Many image restoration algorithms are based on sta-
tistical models. The key to successfully use these algo-
rithms resides in constructing a suitable model of the
degradation (likelihood). However, the model must be
regularized to alleviate overfitting and process outliers.
One natural way to achieve this is to incorporate prior
information about the desired restoration. This can
be easily done in a Bayesian framework. For instance,
Geman and Geman [3] proposed to incorporate prior
information about the correlation of neighboring pixels
in the image, using Gibbs distribution. A labelling of
the image is then obtained by computing the maximum
a posteriori (MAP) estimate.

Unfortunately, the MAP estimate of an image can-
not usully be computed efficiently. Many methods
have been proposed to find the MAP estimate or an
approximation of it. Simulated annealing [3] can, in
theory, compute the MAP estimate, but it is not al-
ways computationally practical. Iterated conditional

modes (ICM) developed by Besag [1] and gradient de-
scent techniques (in the case of continuous labelling)
are methods that do not guarantee convergence to a
global optimum.

Recent developments were done in graph formula-
tion of MAP estimate and related energy minimization
problems [2; 7, 8, 10]. All these algorithms are based
on the computation of maximum-flow and the related
minimum-cut in a specific type of flow graph. They can
be split into two categories. In the first, the graph for-
mulation provides an efficient method for computing
the exact global optimum [7, 8, 10]. However, these
algorithms are limited to linear prior (linear clique po-
tential) which can oversmooth boundaries, with the ex-
ception of [7] which is limited to binary images. The
second category consists of fast approximation via ap-
proximated multi-way cut formulation [2]. One major
limitation of this formulation is the restriction of the
prior to Pott’s model (unordered labelling).

In this paper, we propose an original application of
a maximum-flow method to compute the maximization
step in the Expectation-Maximization Bayesian emis-
sion tomography (ET) reconstruction. The approach is
based on the computation of the maximum-flow and re-
lated minimum-cut in a graph similar to [2, 8, 10]. Be-
cause the maximum-flow approach is limited to the use
of linear prior, we show how to incorporate a line pro-
cess, that preserves discontinuities, in the iterative EM
scheme. The line process is closely related to the in-
troduction of contextual information that are obtained
from a previous iteration of the EM algorithm.

After a general description of the Bayesian frame-
work, We will present the description of our optimiza-
tion method based on graph cut. We then provide an
application to Bayesian ET image reconstruction. In
this application, methods such as simulated annealing
are precluded because of the size of the calculation.
We provide a statistical model based on the seminal
work of Shepp and Vardi [11] on maximum likelihood
reconstruction for emission tomography and provide



Bayesian formulation similar to Green [6] and Geman
and McClure [4], with a different prior.

2. BAYESIAN FRAMEWORK

For the purpose of the analysis, the image space is rep-
resented by a regular array of pixels indexed by i, where
i€S=1{0,...,N—1}. We also need to define a neigh-
borhood system A" = {N; | i € S§}. Typically, N is the
8-neighbors system. The restoration is formulated as
a labelling problem. The restored image corresponds
to a configuration f = {f; | i € S} taking discrete
values in the set of labels £ = {0,...,M — 1}. To en-
force piecewise smoothness, we introduce an unobserv-
able line process [, taking discrete values in {0,1}M,
into the image model to preserve discontinuities in the
restoration [3]. For instance I;;; = 1 if there is a discon-
tinuity between ¢ and 7’. Let’s formulate our restoration
problem from the Bayes theorem:

Pr(f,l|2) « Pr(z|f,1) Pr(f.0),

where f is a configuration, ! the line process and z is
the observation. We are interested to estimate the con-
figuration f that maximizes the posterior probability
Pr(f, 1] z),

f =
= argmax Pr(z | f) Pr(f,1).

argm?x Pr(f, 1]z

This last equation comes from the fact that x is condi-
tionally (given f) independent of I. For the purpose of
optimization, we reformulate everything into an energy
minimization problem; the likelihood and prior energy
are

Eliketinood (| f)
Eprior (f7 l) =

“log Pr(z | f).
—log Pr(f, 1). (1)

Thus, the MAP estimate is obtained by minimizing the
following posterior energy,

E(f7 l ‘ ZE) - Elikelihood(x ‘ f) + Eprior(f7l)' (2)

2.1. Selecting a prior

The prior is constructed as a Gibbs distribution and is
specified by an energy function,
B o~ Forion(f11)

Pr(f. 1) =

where Z is a normalizing constant, called the partition
function. The energy function E,.o.(f,1) is the prior

portion of the image
viewed by a detector t

\ t

N

image grid

Figure 1: Geometrical model scheme employed for
ET. The grid corresponds to the image space S. The
grey rectangle corresponds to the portion of the im-
age viewed by some bin ¢t € 5. The portion of pixel
i viewed by bin t is a;; and is outlined in dark grey.

energy and it is designed so that the expected config-
urations are those for which typical neighboring pixels
have similar labels. Moreover, we choose a prior that
favors piecewise constant reconstructions and that pre-
serves discontinuities. All these are local constraints
that can be conveniently modeled by a local composed
function of f and I,

Eprion(1,1) = D> Bo(fi — fur) (1 — L)

i€ES i EN;

+Z Z ali, (3)

i€ES i EN;

where o and [ are positive constants and the func-
tion ¢(u) is nonnegative, even, monotonically increas-
ing and minimized at u = 0. The choice of ¢ is made in
order to achieved the desired properties of the configu-
ration. It must reflect some qualitative features about
the desired restoration. One feature is smoothness
within homogeneous regions of the image. Some ob-
vious choices are ¢(u) = |u| and ¢(u) = u?. The choice
of finding the exact MAP estimate by a maximum-flow
approach limits our choice to ¢(u) = |u|. At discon-
tinuities (natural boundaries) the energy potential of
pixel i, > . cnr, B¢(fi — fir) tends to be high and makes
boundaries oversmoothed. To correct this problem, we
have incorporated a discrete line process [. This way,
the chosen prior will favor smoothness except when a
discontinuity occurs.



2.2. Statistical model for ET

In ET, the image reconstruction task consists in re-
covering emitter densities from a sinogram (projection
data'). To accomplish this, we must construct a model
of the image space S and of the degradation that oc-
curs in the observation (projection data). The pro-
jection data are indexed by ¢ € B ={0,...,T}, where
T = number of angles x number of bins. In figure 1, we
see a schematic representation of our geometrical model
for ET. The degradation model assumes the emission
from pixel i to be completely random. Therefore, the
number of photons emitted from 7 and detected in bin
t forms independent Poisson processes in ¢ and %, be-
cause each photon is detected by at most one bin and
the emissions are independent. Because the projection
data are the superposition of independent Poisson pro-
cesses, it follows that x;, a projection data, is indepen-
dent Poisson distributed random variables,

x; ~ Poisson (Z atz-fz-> . (4)

i€S

As a result, the likelihood, which is the probability of
the observation (projection data) knowing the emitter
density, is defined as,

(Zies atifi)zt exrp (_ Yies atifi) '

ﬂft!

Prz| f)=1]]

teB

In this model, the coefficients a;; represent the prob-
ability that each emission from pixel i is detected in
detector ¢ (see figure 1). They are assumed known
and they model the geometry of the detection system.
Other major physical factors in ET, such as attenua-
tion and scatter, can also be included in ay;.

Instead of considering the model of equation (4), it
is easier for computational reasons, to treat it as an
incomplete data problem. In fact, it is more direct to
estimate f if the unobserved data z; (the number of
photons emitted from pixel i and recorded in bin %) is
known. Since an estimate of f allows the distribution
of the missing data z to be easily specified, this sug-
gests the use of an EM iterative scheme. Iteratively, we
perform successive estimations of z (E-step) and MAP
estimates of f according to the posterior distribution
Pr(f | z) (M-step). Notice that the Poisson model still
holds for the missing data z, so we have

zti ~ Poisson (ay; f;) -

1We prefer the term projection data to sinogram, because the
action of detecting in bin ¢ an emitted photon from pixel i is
similar to a projection.

Procedure MAP EM Algorithm(z : projection data)
f := some initial configuration
Repeat

update the complete data z
according to equation (7) (E-step)
[ = argmin; E(f,1| 2)
f=argminy E(f,l] 2)
Until convergence

} o

Figure 2: Pseudo-code MAP EM algorithm. Each
repeat loop is considered to be an iteration.

and the likelihood can be restated as

(atz‘fi)Zt exp (—ayi fi)
Zt!

Prz 1 )= ]

i€S,teB

. (5)

The corresponding likelihood energy is defined by

Eliketinood(z | f) =
Z Z (atifi — zeilog(asi fi)) + constant.(6)
it

As shown in [6, 9], we can estimate (E-step) the miss-
ing data z;; by setting it to its conditional expectation
given z and f:

2ti =

E(zi | x, f)

_ Tt Qtg fi, _ (7)
Yies it fir

where f stands for the previous iteration estimate of f.
Finally, the M-step consists in minimizing the posterior
energy for f and [,

E(f7 l | 2) - Elikelihood(é ‘ f) + Eprior(f: l)
= D Y aufi - ziloglanfi) +
i€S teB
SN BIfi— £l =li) +
i€S i'EN;
Z Z alyy +  constant. (8)
i€S i'EN;

3. MINIMIZING THE POSTERIOR ENERGY

We are interested to choose (f,[) that minimizes the
posterior energy (8), since MAP estimates are difficult
to compute in general, we propose a deterministic al-
gorithm which is similar to ICM, but differs in the way



it updates the components f; of a configuration f all
at the same time. The algorithm (shown in figure 2)
starts with an initial labelling f(© (typically a maxi-
mum likelihood estimation is used). Iteratively (like in
ICM), we first update the line process while keeping f
frozen to f("=1) (in equation (8)),

i = argmlin E(f0=1 1] 2).
Notice, that the energy is minimized by setting

i) :{ 0, Suen, IF—F" V) < /s

FH .
" 1, otherwise.

It remains to minimize over f. We update the line
process to 1) in equation (8) and then we determine
() that minimizes

E(f, [ | 2) Z Z ai fi — Zeilog(ag fi)
i€S teB
+ Z Z O | fi — fir
iIES i EN;
+ constant, (9)

where

0, iV =1
Q) = v Ve 10
" { 3, otherwise, (10)

is introduced to better fit our graph formulation of the
next section. This minimization can be solve globally
for f by computing the minimum-cut in a particular
flow graph [2, 8, 10]. In the next section we describe the
flow graph construction and explain how the minimum
cut gives the desired configuration.

3.1. Flow graph

Let G = (V,€) be a flow graph (see figure 3), where V
is the set of vertices and £ is the set of weighted edges.
The set V is composed of two types of vertices: a set of
configuration nodes and two distinct terminals called
the source s and the sink ¢,

V=V U{s,t},

where V' = {(i,k) : i € S,k € L} is the set of nodes
corresponding to all possible assignments. The struc-
ture of the nodes and connections in the flow graph
G are illustrated in figure 3 for a 2-neighbor system
N. Two types of edges compose &, likelihood edges
Elikelihood and prior edges Eprior. The set of likelihood
edges generates paths from the source to the sink,

s—=(,0) = = (i,k) > = (i,M) - t,

cap(i”’,0)

cap(i’,1)

Figure 3: Flow graph representation of a 1D image
with 3 pixels {i",i,i'} (from top to bottom) and 3
labels {0,1,2}. The minimum cut, composed of the
thick edges, separates the graph into two parts (in
grey), one linked to the source s (black nodes) and
the other to the sink ¢ (white nodes). The outgo-
ing edges from the source have infinite capacities.
A likelihood edge assigning label & to pixel i has ca-
pacity cap(i, k) while its corresponding inverse edge
has large constant capacity K. The prior edges have
capacity O;;. Here, label 0 is assigned to pixels i
and i”, and label 2 is assigned to pixel i/, yeilding
the configuration of emitter densities f = {0,0,2}.
The discontinuity between pixels i and i’ is revealed
by the two prior edges in the cut, inducing a penalty
cost @”r |0 - 2|



for all i € S. Outgoing edges from the source s
have infinite capacity to insure they can never be sat-
urated. All other likelihood edges (i, k) — (i,k + 1) are
assigned the capacity cap(i, k) such that cap(i, k) =
> e ik — Ziilog(ay;k) while the corresponding in-
verse edges (i, k + 1) — (i, k) are given the capacity K,
where K is choosen to be a large finite constant2. This
large value is required to insure that such edges are
never satured, therefore avoiding the possibility of mul-
tiple solutions to the labelling problem [2, 8]. The other
type of edges present in the graph, prior edges Eprior,
is defined by the neighborhood system employed ()
and generates connections between assignments (i, k)
and (i', k) if i’ € N for all i € S. The capacity of prior
edges is set to O;; of equation (10).

A cut C C £ is a set of edges such that the source s
and the sink ¢ are separated in the induced graph Ge =
(V, € — C). In short, the cut C contains at least one
edge of every path from the source s to the sink ¢. The
capacity (cost) of a cut is simply the sum of the edge
capacities in C. We denote the cost of a cut as |C|. The
key part of our algorithm is based on the computation
of the minimum cost cut C. Its computation is achieved
efficiently by computing the maximum flow between
the source and the sink. We have chosen Golberg’s
preflow push relabel algorithm [5], which in our case
features an almost linear average complexity.

As shown in [2, 8] for similar, but different flow graph
formulations, the cost of the minimum cut |C| corre-
sponds to the global optimum of equation (9). Because
the cost of a cut is given by the summation of the edges
it contains, the optimal configuration is provided by the
likelihood edges contained in the minimum cut C. In
brief, cutting a likelihood edge (i, k) — (i, k + 1) corre-
sponds to assign label k to pixel 1.

4. EXPERIMENTS AND RESULTS

In this section, we compare the performances of our
method to maximum likelihood EM reconstruction and
also to the standard ICM Bayesian ET reconstruction.
Experiments are done on 2D synthetic data (figure 4)
and over the Hoffman brain phantom (figure 5). The
set of labels £ = {0,...,255} represents normalized
photon counts.

4.1. Elliptic phantom

The image space S is a regular grid of 64 x 64 pixels
(figure 4). We performed 64 projection angles over 180°
and used 64 detector bins for each projection. The bin

2For k = M — 1, the likelihood edge is (i, k) — ¢ and there is
no inverse edge (see figure 3).

(c) (d)
(e) )

Figure 4: (a) Ground truth image. (b) A noisy pro-
jection data obtained from the noiseless projections,
where the horizontal and vertical axes correspond to
the angles and bins respectively. (c) Maximum likeli-
hood EM reconstruction obtained after 20 iterations
of the algorithm. The normalized posterior energy
is 2924.0 and the RMS error is 26.4. (d) ICM MAP
EM reconstruction with @ = 10.0 and g = 2.0. The
normalized posterior energy is 66.4 and the RMS
error is 12.4. (e) Maximum-flow MAP EM recon-
struction with a = 0.0 and 5 = 2.0. The normal-
ized posterior energy is 77.6 and the RMS error is
16.0. (f) Maximum-flow MAP EM reconstruction
with o = 10.0 and § = 2.0. The normalized posterior
energy is 34.2 and the RMS error is 11.4.



() (d)

Figure 5: (a) Sinogram of the Hoffman brain with
activity ratios of 4:1:0 for grey matter, white mat-
ter and CSF, respectively. (b) Maximum-flow MAP
EM reconstruction with § = 2.0 and « = 10.0. (c)
Maximum-flow MAP EM reconstruction with 5 = 2.5
and a = 10.0. (d) Maximum-flow MAP EM recon-
struction with = 3.0 and a = 10.0.

and pixel width are the same. Finally, we simply add
Poisson noise to each projection, using the noiseless
projection values as the Poisson parameter. The phan-
tom used and the noisy projection data are shown in
figure 4 (a) and (b), respectively. In figure 4 (c), we see
the noisy result obtained from the standard maximum
likelihood EM reconstruction method. This image was
generated by setting ©; = 0 in equation (9) and then
after running 20 iterations of the algorithm shown in
figure 2 (starting with a flat labelling as initial value
for f) The RMS error between the original phantom
an the reconstruction is 26.4. The image in figure 4
(d) corresponds to an ICM reconstruction with param-
eter § = 2.0 and @ = 10.0. The RMS error for the
ICM reconstruction reduces to 12.4. Finally, in figure
4 (e) and (f), we present the reconstructions obtained
with the maximum flow approach, one with parame-
ter 5 = 2.0 and @ = 0.0 and the other for § = 2.0
and a = 10.0. The RMS errors are 16.0 and 11.4, re-
spectively. To compute the posterior energy of these
reconstructions, we have set the complete data (z) of
equation (9) to a flat image and the parameter were set

to a = 10.0 and 8 = 2.0. The normalized 3posterior
energy obtained are for the reconstruction in figure 4
(c) 2924.0, (d) 66.4, (e) 77.6 and (f) 34.2.

4.2. Hoffman brain

The Hoffman brain image space S is a regular grid of
128 x 128 pixels (see figure 5). The ratios of activities
in the Hoffman brain are 4:1:0 for grey matter, white
matter and cerebrospinal fluid (CSF), respectively. 128
projection angles over 180° were performed, using 128
detector bins for each projection. The bin and pixel
size are the same. Finally, Poisson noise was added to
the sinogram (projection data) to simulate the degra-
dation. In figure 5 we see the noisy sinogram (a) and
three reconstructions obtained by the maximum-flow
MAP EM algorithm: (b) with @ = 10.0 and 8 = 2.0,
(c) with @« = 10.0 and § = 2.5 and finally (d) with
a =10.0 and § = 3.0.

5. DISCUSSION AND CONCLUSION

We have presented a robust method based on graph
cuts to compute Bayesian ET reconstruction using sim-
ple priors. The method showed great improvement over
the maximum likelihood EM reconstruction by reduc-
ing the RMS error by 56.7%. It has also shown bet-
ter results than ICM with reduction of 8.1% of the
RMS error. With the maximum flow EM reconstruc-
tion method, flat regions within the images are almost
perfectly recovered. However, if the line process is not
used, as in figure 4 (e), the reconstruction does not
behave as well as it looks (an increase in energy and
RMS error). This problem happens when smoothing
is done across adjacent regions (over boundaries) using
a non-boundary preserving smoothing function such as
¢(u) = |u|. This problem was solved by introducing
a line process in the iterative MAP-EM scheme. This
process allows the introduction of contextual informa-
tion and it could be improved by adding more infor-
mation about boundaries, such as anatomical classifi-
cation of brain tissue. The uses of a continuous line
process estimated from a robust estimator, such as the
truncated quadratic function could reduce some arte-
fact created by the discreteness of the line process and
the fact that they “freeze” while we optimize over f.
Even if the form of the prior is limited, our method
is of great utility, because the complexity of ET pre-
cludes the use of techniques such as simulated anneal-
ing. Therefore, the energy function has to be min-
imized by some deterministic method. With other

3Translation and scaling with respect to the energy of the
ground truth.



methods there are no guarantee to reach a global opti-
mum, but just hope to escape a poor local optimum.
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