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Abstract

When an observer moves through a rigid 3D scene, points
that are near to the observer move with a different image ve-
locity than points that are far away. The difference between
image velocity vectors is the direction of motion parallax.
This direction vector points towards the observer’s trans-
lation direction. Hence estimates of the direction of mo-
tion parallax are useful for estimating the observer’s trans-
lation direction. Standard ways to compute the direction
of motion parallax either rely on precomputed optical flow,
or rely on motion compensation to remove the local image
shift caused by observer rotation. Here we present a simple
Fourier-based method for estimating the direction of motion
parallax directly, that does not require optical flow and mo-
tion compensation. The method is real-time and performs
accurately for image regions in which multiple motions are
present.

1 Introduction

This paper addresses the problem of estimating directly the
direction of motion parallax in local image regions. We are
specifically interested in situations in which two or more
layers are present in local regions. Such situations are abun-
dant in nature, for example, in 3D cluttered scenes such
as when trees or bushes are present. The main challenge
with 3D cluttered scenes is that the pointwise image veloc-
ity field is difficult to estimate, since there are a large num-
ber of depth discontinuities and a large number of depth
layers present. These discontinuities and layers violate the
assumptions of standard optical flow methods namely that
the velocity field is smooth [1], and also violate the key as-
sumption of layered motion methods, namely that only a
small number of layers are present [3, 6, 4, 21].

One way to address the challenge of 3D cluttered scenes
is to note that, even though the standard assumptions of op-
tical flow and layered motion are violated, there still exist
strong constraints on the image velocity field. Extending the

arguments of [13, 8, 17], one can show [15] that when a lo-
cal image region contains visible surfaces at a wide range of
depths and when this local region is not near the observer’s
translation direction, also known as the axis of translation
(AOT), the image velocity vectors in that local region are
constrained to lie near a motion parallax line,
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Here,
� 	 �!� � �!� 	 �!� �

are constants that depend on the image
region and on the observer’s instantaneous 3D translation
and rotation. The vector
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�
is the direction of motion

parallax. It points from the AOT to the center of the image
region in question. The variable

�
depends on position $ �
%

in the region and on the depth at
� $ �
%&� .

The goal of the present paper is to introduce a sim-
ple method for estimating the direction of motion parallax��� 	 �!� � �

in local image regions. This is well-known to be an
important problem. If the observer can estimate the direc-
tion of motion parallax in several local regions, it can use
these to estimate the direction of heading [13, 8, 17, 15].
The emphasis in this paper is to introduce a method that
estimates the direction of motion parallax,

��� 	 �!� � �
, with-

out precomputed optical flow as in [15, 5]. The reason for
avoiding optical flow as a prior computation is that optical
flow is difficult to estimate in 3D cluttered scenes. The par-
ticular technical contribution of this paper is to show how
to estimate the direction of motion parallax using a PCA
method similar to [5], but without having to first perform
motion compensation.

In Sec. 2, we describe the properties of motion parallax
in the frequency domain. The key theoretical insight is de-
veloped in Sec. 3, where we show how to collapse the PCA
method from 3D to 2D. In Sec. 4, we clarify further why
PCA provides an estimate for the bowtie axis. In Sec. 5, we
present experimental results.



(a) (b)

Figure 1: (a) An image translating with uniform image ve-
locity produces a plane of energy in the 3D spatio-temporal
frequency domain. Here we can see temporal aliasing
caused by high velocities. (b) Motion parallax locally yields
a distribution of power in the 3D frequency domain that is
in the shape of a bowtie. Here, all planes intersect at a main
axis, but other intersections are also present due to temporal
aliasing.

2 Frequency properties of motion
parallax

The method we present in this paper is based on frequency
domain properties of motion parallax. The motion plane
property [20, 9] states that an image translating with uni-
form image velocity
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pixels per frame produces a

plane of energy in the 3D spatio-temporal frequency do-
main: �
	�)
	��*�
�
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(2)

Substituting Eq. (1) into Eq. (2) yields a family of planes in
the frequency domain,�3�/	����4��	5�!)+	6�7�����8�������9�!)+����)+-:�;0< 
This yields a distribution of power in the 3D frequency do-
main that is in the shape of a bowtie (see Fig. 1(b)) [12].
The planes of the bowtie intersect at a common line, called
the bowtie axis. The axis passes through the origin and is in
direction

�!=����>����	��@? �BA	 �*�BA� �
.

When high velocities are present, temporal aliasing oc-
curs (see Fig. 1). The usual way to deal with temporal
aliasing is to use motion compensation [14, 2, 11].

Motion compensation has also been used to estimate the
direction of motion parallax. In [15], a two stage frequency-
based method was introduced for finding this bowtie axis
for any local image region containing a range of depths. The
first stage performs motion compensation by finding a best
fitting motion plane in the frequency domain, and shearing
the 3D power spectrum such this best fitting plane and the
bowtie axis lie in the

�C) 	 �D) � �
plane. The second stage is a

brute force search for the direction of the bowtie axis within
the

�C)
	&�D)+�
�
plane [12].

An alternative frequency domain method for finding the
bowtie axis is based on PCA [5]. This is the method that
we improve on in the present paper. The idea of [5] is that
3D frequency components that are near the bowtie axis have
more power than off-axis components, since motion planes
superimpose at the bowtie axis. A PCA is performed which
finds best fitting line to the power spectrum, effectively pe-
nalizing power that is off the bowtie axis. This PCA method
still requires motion compensation, however. For exam-
ple, if the vector

�3�/	(�E�/�.�
is large, then frequencies on or

near the bowtie axis can undergo temporal aliasing and this
aliased power badly corrupts the estimate of the bowtie axis
parameters

�"��	(�!���
�
.

3 Avoiding motion compensation
To understand how motion compensation can be avoided,
we first need to review how motion compensation is de-
fined in the frequency domain, and then review how motion
compensation can be expressed as a PCA problem in the
frequency domain.

The usual way to perform motion compensation in the
frequency domain is to find the best fitting motion plane,
and to shear the frequency domain such that this best fitting
plane is mapping to the

�C) 	 �D) � �
plane. If we define “best

fit” by the sum of weighted distances in the
) -

direction,
then we wish to minimize:FHG �"�
	(�
�
�
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where the range of frequencies is
)'	��S)+�UT*V�=XW A �� # � #��W A =YBZ

,
).-[T\V5=X] A �# � � #��] A = Y�Z (these are the frequencies below

the Nyquist rate) and

Q 	^�_- I Q �C) 	 �D) � �S) - �
is a set of weights which depend on the 3D Fourier trans-
form of the image ` � $ �
%a�
b!� . Typically, Q 	#�_- is the 3D am-
plitude spectrum [19]. Later, in Sec. 4, we will let Q 	^�_- be
the power spectrum.

The sum of weighted squared distance F G ��� 	 �!� � � in Eq.
(3) can be re-expressed in terms of matrices. Let c be
the d AHegf*h matrix that lists the d A�e frequency triplets�C)+	��D)+�>�S).-E�

. Let W be an d AHe�f d A�e diagonal matrix of
weights Q �C)
	��D)
���S).-E� . Define the
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where each
o

is a triple summation over
)'	��D)
���S).-

below
the Nyquist limits.

For any
�"� 	 �
� � �

let v Iw��� 	 �!� � � Y � ] be a vector normal
to the motion plane of Eq. (2). Thus we can write Eq. (3)
as: F G ��� 	 �!� � �\I v ] c ] j A c*v  (5)

The motion compensation problem then is to find the vector��� 	 �
� � �
that minimizes F G ��� 	 �!� � � .

This formulation needs to be modified slightly to account
for temporal aliasing, which occurs when there are high im-
age speeds present, i.e. P � A	 �x� A� P is large. Temporal aliasing
causes motion planes to wrap around at the Nyquist fre-
quency, which is not accounted for by the distance func-
tion of Eq. 5 (see Fig. 1). The traditional way to perform
motion compensation is to use a multiscale method [14, 2].
For example, when minimizing Eq. (3), an initial estimate
of
���5y	 �!�5y� �

is obtained using low spatial frequencies only.
The weighting function Q �z) 	 �S) � �D) - � is then sheared itera-
tively in the

) -
direction, with wraparound where it exceeds

Nyquist limit. At the { -"| iteration, we write this shear trans-
formation with wrapround as:

Q~} �C)+	&�S)+�>�D)+-r��� Q �C)+	(�D)+�5�#�z).-���� }	 )
	a��� }� )+�
���U�&� e �k (6)
The minimization is then applied to the sheared spectrumQ } �C) 	 �S) � �D) - � to obtain an incremental

��� 	 �!� � �
, and this

incremental velocity is added to the currently velocity esti-
mate, ��� }
� G	 �!� }
� G� �\� �"� }	 �!� }� �k���"�
	��
�
�
�_ 
Higher spatial frequencies are included in each iteration,
since temporal aliasing is less likely to occur when the
motion has been partly compensated. The computation
terminates when the motion is fully compensated, that is,
when the incremental velocity

�"�'	��
�
�
�
is sufficiently close

to
�"0��D0��H 
To pose the problem in terms of PCA, we now change

the formulation slightly. We minimize the perpendicu-
lar distance to a motion plane, rather than the distance in
the

)+-
direction [7, 18, 10]. This method is known as

orthogonal distance regression [16]. For any frequency�C) 	 �S) � �D) - �
and velocity

��� 	 �
� � �
, the perpendicular distance

from
�C) 	 �D) � �S) - �

to the motion plane defined by
�"� 	 �!� � �

is:

P �C) 	 �D) � �S) - �/�'��� 	 �!� � � Y � P.� ? � A	 ��� A� � Y
and the sum of squared weighted perpendicular distances isF A � v �\I Yv ] v JK L M K N M K O5Q A	^�_- P ) - ��� 	 ) 	 ��� � ) � P A (7)

or equivalently,F A � v �B��� v ] c ] j A c*v � � � v ] v �_ (8)

If the weights Q �C)
	&�S)+�>�D)+-�� have been sheared by motion
compensation such that F�G � v � has a minimum at

�"0(�
0(� Y �
,

then one can show that F A � v � also has a minimum at�"0(�
0�� Y �
.

Since the matrix c ] j A c is real and symmetric, it has
three orthogonal eigenvectors. Moreover, since Eq. (8) is a
Rayleigh quotient, the eigenvectors correspond to the max-
ima and/or minima of F A � v � . Since F A � v � has a minimum
at
���
	��!�
�>� Y �����C0��D0�� Y �

, this vector must be an eigenvector
of c ]�j�� c . The remaining two eigenvectors thus lie in the�C)+	��D)+�
�

plane. It follows Eq. (4) must have the form:lmmmm
n
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(9)
The symbol

o
denotes a triple sum over

) 	 �D) � �D) -
, below

the Nyquist limit.
It follows that the

�C) 	 �S) � �
components of the remain-

ing two eigenvectors are identical to the eigenvectors of the
following � f � matrix, which is just the upper left part of
matrix (9):ln o ) A	 Q A	#�H- o ) 	 ) � Q A	#�_-o ) 	 ) � Q A	^�_- o ) A� Q A	^�_-

su (10)

This leads to the main technical insight of the paper. Al-
though we reached the above conclusions by assuming the
weighting function Q 	^�_- is first motion compensated – that
is, sheared in the

)+-
direction so that the best fitting motion

plane is the
�C)
	(�D)+�
�

plane – the four elements of (10) are un-
affected by this shearing, since the shearing only amounts
to translatation within each

�C)'	&�D)+�
�
column in the 3D fre-

quency domain. The sum over
)
-

in Eq. (10) can be treated
as an inner loop, namely a sum over

)
-
of Q A	#�_- . This col-

lapses the 3D eigenvector problem into a 2D eigenvector
problem. In particular, we can compute the eigenvectors
of the matrix in (10) without first performing motion com-
pensation. This is useful since, as we see in the next sec-
tion, the eigenvector with the larger eigenvalue provides an
excellent estimate of the

�z) 	 �S) � �
component of the bowtie

axis. Hence this eigenvector is an excellent estimate of the
direction of motion parallax.

4 Principal eigenvector, bowtie axis,
and SSNP

For any Raleigh quotient, the eigenvector with largest
eigenvalue is called the principal eigenvector. The princi-
pal eigenvector defines the “best fit line” that passes through



the origin, in that the sum of weighted orthogonal distances
to this line is minimized [16]. For the 2D matrix (10), the
principal eigenvector is the best fit 2D line in the 2D plane�C) 	 �S) � �

. There is one sample point for each
�z) 	 �D) � �

. We
wish to choose Q 	#�_- such that

o K O Q A	^�_- is relatively large
for spatial frequencies

�C) 	 �D) � �
near the bowtie axis line�E=�� � �
� 	 �

. Such a Q 	^�_- should yield a principal eigenvector
of (10) that is roughly aligned with

�!=��^�&�!��	5�
.

To choose Q 	^�_- , we consider the distribution of power
within constant

�C)
	&�S)+�
�
columns of the 3D frequency do-

main, with
)+-

varying within a column. Assuming a bowtie
is present, columns that intersect the bowtie axis will have
large power PD�` �C)
	��D)
���S).-E� P A for

).-
at or near the bowtie axis,

but small power for
)+-

away from the bowtie axis. For
columns that do not intersect the bowtie axis, the power will
be more uniform over

) -
.

With this distribution property in mind, we define Q 	#�_-to be the normalized power spectrum

Q 	^�_-:I P �` �C)+	(�D)+�5�S).-E� P Ao KEO PD�` �z)+	��S)+�5�D).-E� P A
 

(11)

Clearly
0�� Q 	#�_-[� Y and, for fixed

�C)
	(�D)+�
�
,J K O Q 	#�_-�� Y  

We can think of Q 	#�_- as the whitened power spectrum [9],
so that each spatial frequency

�z) 	 �D) � �
has the same total

normalized power.
With the above definition of Q 	#�_- as the normalized

power spectrum, we now define the sum of squared nor-
malized power �(�&��� I J K O Q A	^�_-  
which is a function of spatial frequency

�C)'	(�D)+�+�
. In Sec. 5,

we will show several examples of SSNP for different motion
parallax sequences.

We expect to find relative large values of SSNP for spa-
tial frequencies

�C) 	 �D) � �
near the bowtie axis line

�E=�� � �!� 	 �
.

Two extreme examples illustrate why. One extreme is an�C) 	 �S) � �
such that PD�` �C) 	 �D) � �S) - � P is non-zero for only one

value of
) -

, which is the ideal case that the
�C) 	 �S) � �

column
intersects the bowtie axis. In this case, Q 	^�_- is 1 for that).-

and is zero for all other
)+-

, and so SSNP
� Y

. The other
extreme is an

�z)+	(�D)+�+�
such that PD�` �C)+	&�S)+�>�D)+-r� P has the same

value for all
)+-

. Since there are
e

values of
)
-

, we would
have Q 	^�_-9� Y � e for all

)+-
and so

���&�9� ��]]a� � G] . It
is easy to see that the general case lies between these two
extremes and so ������� Tq� Ye � YH�  (12)

As argued above, the left and right limits tend to correspond,
respectively, to frequencies

�C)'	��S)+�+�
far from and to near to

the bowtie axis line. Thus, this choice of Q 	#�_- should yield
a principal eigenvector of (10) that is roughly aligned with
the bowtie axis line

�!=�� � �!� 	 �
.

5 Experiments
The experiments below show there are larger values of
SSNP near the bowtie axis, and that the principal eigenvec-
tor of Eq. (10) yields an excellent estimate of the direction
of motion parallax

�"� 	 �!� � �
(see Eq. (1)). We also show that

the method performs well even in the presence of a non-zero
”camera rotation” vector

�3��	��E�/�+�
.

5.1 Synthetic motion layers
The first set of experiments uses a scene that obeys the
model of Eq. (1) exactly. See Fig. 2. Each video is defined
by shifting a set of tiles in a set of depth layers from frame
to frame according to the model of Eq. (1) and ensuring that
near tiles occlude far tiles. Each video is defined by a subset
of up to five layers,

��T1V Y � � �# � � _�S� Z . Each layer is a set
of opaque 2D square tiles which are dropped in sequence at
randomly chosen positions in a 2D image plane.

In addition to capturing occlusion relations between lay-
ers, the size and density of tiles in each layer is chosen ac-
cording to the laws of linear perspective. (This is not nec-
essary for the model, but it is a natural property and so we
enforce it.) Thus the width of each tile in layer

�
is chosen

to be proportional to
�

(and so the area of each tile is pro-
portional to

� A
), and the number of tiles in layer

�
is chosen

to be inversely proportional to
� A

.
Figure 2 shows an example of a single �'� f �
� pixel

frame. For the figure, each tile is given a single random
intensity. For the videos that we used in the experiments,
each tile was given a 1/f noise pattern. We do not use 1/f
noise in Fig. 2 because then tiles would be much less visible
for the reader.

Videos were created for various numbers of frames
e

,
by shifting the layers as described above. Before taking the
3D Fourier transform of a video sequence, we multiplied
by a raised cosine window in all three dimensions in or-
der to reduce boundary artifacts in the Fourier transform.
Once the 3D Fourier transform of the windowed image se-
quence is computed, we examine the SSNP and whether
there are larger values near the true bowtie axis, i.e. in di-
rection

�E=�� � �!� 	 �
.

Fig. 3 shows the results for one set of parameters,
namely

�"� 	 �!� � �:��� Y � Y �
and

��� 	 �E� � �4���C0���= h �
. Each

plot shows the average SSNP as a function of
�z) 	 �S) � �

. The
average is taken over 100 videos of size d f d pixels and

e
frames, where d � �
� and

e T�V � � � �D �� Y � � h � Z . Each plot



��� Y � � � h � � �D�

��� � � �

��� � �D�

�¡� � e � � e � � e �1  e � Y � e � h �
Figure 3: Example plots of SSNP as a function of

�C)'	&�S)+�
�
, averaged over 100 videos with varying number of frames

e
and

layers { . Left column shows the
�

values of the layers for each row, so that { �1� for the top row, { � � for the middle two
rows, and { � Y for the bottom row. Each column corresponds to a fixed number of frames

e
. The intensities in each plot

have been normalized to have the same maximum value for illustration purposes.

in Fig. 3 has been normalized to have the same maximum
grey level intensity.

We observe three effects in these data. The first is the
hypothesized one. It arises for larger number of frames

e
(say

e£¢  
) and for more than one motion layer (Fig. 3

upper three rows). It features larger values of SSNP in the
direction of the bowtie axis,

�!=��#�>�
��	��2���E= Y � Y �
, namely

the line,
)+�¤�¥=�)+	

, from the top left corner to the bottom
right corner of each plot. (The origin is at the center). These
larger values increases with

e
as illustrated by the increase

of the contrast of the plots.
Second, we observe larger values of SSNP along lines

that are parallel to the bowtie axis (these appear in the up-
per two rows only). These lines are the result of tempo-
ral aliasing. When a motion plane reaches the temporal
Nyquist frequency, aliasing occurs. The motion plane wraps
around and can then intersect other motion planes below the
Nyquist frequency (see Fig. 1(b)). This intersection of an
aliased plane and another motion plane yields larger val-
ues of SSNP. For a large number of motion layers (top row,{ �¦� ), these secondary lines are smaller than the primary

one on the bowtie axis. The reason is that the secondary
lines arise from two two intersecting motion planes only
(e.g.

��� � � � or
��� Y �S�

) whereas the primary one on the
bowtie axis is due to the intersection of all { �§�

motion
planes. Note that in the second row, where { � � , the sec-
ondary lines are as bright as the primary lines. Also note
that, in the third row, there are two motion planes and both
are aliased at high spatial frequencies. However, they do not
intersect each other and hence no secondary lines result.

A third effect occurs for small values of
e

, in particular,e � � . Here, the temporal frequency values
)
-

are coarsely
quantized (

)+-:�¨0(� Y
), and a banding structure occurs in

the SSNP. To see why, note that for some spatial frequency�C)+	��D)+�
�
, the power must be distributed in some proportion ©

and
Y = © between

) - �ª0
and

Y
, respectively. The squared

normalized of each is then © A and
� Y = © � A , respectively,

and so the SSNP is is © A �~� Y = © � A , which depends on © .
This proportion © varies with

�z) 	 �D) � �
, hence the banding in

the
e � � case. This third effect is unrelated to the bowtie

axis and occurs even in the case of a single motion plane.
(See Fig. 3 bottom row and leftmost column.) This banding



Figure 2: One �
� f �
� pixel frame of a synthetic video.
There are five layers,

�,� Y �� # � ��S�
( { ��� ). For the actual

motion sequences, each tile is given a 1/f noise.

disappears as
e

increases, since the more finely quantized).-
is better able to represent the single motion plane.
We have shown that the SSNP has larger values along

the bowtie axis and that there are larger values at other spa-
tial frequencies as well. The question thus arises: are the
larger values near the bowtie axis sufficient for estimating
the bowtie axis? To answer this question, we computed
the angular error between the direction of the 2D principal
eigenvector and the bowtie axis, for each of 100 videos in
each condition of Fig. 3, in particular, the first three rows.
We use spatial frequencies up to half the spatial Nyquist
limit P ) P�« W ¬ � Y � , to reduce the effects of aliasing above
the Nyquist frequency. Table 1 shows the median error for
each condition. The errors are large for

e � � , but are less
than six degrees for

e~¢ � . e
2 4 8 16 32

five layers(
��� Y �� # � H�S�

) 19.7 6.0 2.6 2.5 2.5
two layers (

��� � � � ) 14.8 3.9 3.2 4.6 5.9
two layers (

��� � �D� ) 17.8 4.6 2.4 2.5 2.9

Table 1: Median of absolute angular differences (in degrees)
between the bowtie axis direction and the computed princi-
pal eigenvector, for layered motion scenes illustrated in Fig.
2

5.2 Real sequence
The second experiment shows how the method performs on
real image sequences, each frame having � � � f � � � pixels.
A scene composed of plants was shot under two different
camera motions. Sequence A was shot by a camera under-
going a lateral translation only. Sequence B was shot by a

camera undergoing lateral translation while being gradually
tilted, which produces a rotation component perpendicular
to the direction of motion parallax. The true motion parallax
direction for both sequences is roughly horizontal. Both se-
quences contain 128 frames. We use lateral motion mainly
for clarity in presenting the data, since all patches have the
same

�
and

�
vectors. However, the method does not re-

quire lateral motion [15].
Figure 4(a) shows a single frame from sequence A. Fig-

ure 4(b) and (c) show the SSNP for a column of regions
(see dotted lines in Fig. 4(a)) from sequences A and B re-
spectively with different temporal windows. As the number
of frames is increased, the bowtie axis becomes much more
clear. For both sequences, the bowtie axis converges to a
vertical line since motion parallax is horizontal.

Figure 5 shows that increasing d f d , the size of re-
gions, lowers the errors. This is expected only when the ob-
server’s translation is lateral [15]. Also note that the errors
are bigger for the real sequences than for the synthetic ones
since the surfaces in the real sequences (the leaves) have
much less texture on them. (Recall the synthetic squares
had 1/f texture.) In addition, the errors are slightly larger
for sequence B in which there is camera rotation. One pos-
sible reason for this is the higher image velocities which
leads to more temporal aliasing.

5.3 Performance Comparison

Computation time for any region is roughly proportional to
the number of frames

e
. For a region of width d � �
�

pixels and for
e � h � , the following times are typical. The

3D FFT took about 0.3 seconds. The PCA computation in-
cluding computation of SSNP took an additional

0( 0� 
sec-

onds. This is much faster than the method of [15] which
used motion compensation followed by a brute force search
for the bowtie axis. That method typically used about 6
seconds total per local region (0.65 sec for motion com-
pensation and over 5 sec for the brute force bowtie search.
The new method is also must faster than the previous 3D
PCA method [5]. The reason is that the 3D PCA method re-
quires motion compensation as a first stage (0.65 seconds,
as quoted above). Quoted values are on an AMD Athlon 1.6
GHz cpu, running Matlab version 6.5.

The accuracy of the new 2D PCA method is near iden-
tical to the 3D PCA method [5]. It was shown previously
[5] that the 3D PCA method has similar accuracy to the
method of [15]. Thus there is no tradeoff of accuracy for
the decrease in computation time for the new method.

Finally, a natural question to ask is how well standard
methods for computing motion parallax which are based on
motion compensation perform on these sequences. We ran
the Lucas-Kanade optical flow method [14], and fed the ve-
locity vectors into the motion parallax method of [17]. The



(a)

(b) (c)

Figure 4: (a) A single frame from Plants sequence A. (b)
SSNP of a column of regions from Plants sequence A (lat-
eral translation only) and using a varying number of framese �� ��� # � H� Y �   . (c) SSNP for a column of regions from
Plants sequence B (lateral translation + tilting) and using a
varying number of frames.

optical flow was computed over ­ f ­ pixel regions, and
motion parallax was computed using a

� f �
grid of vectors,

subsampled from a
� ­ f � ­ pixel region. We expected

this method to perform well when the image velocities are
roughly constant over a distance ­ (scale of objects) but
vary over a distance

� ­ (multiple objects). This is indeed
what we found. (Data not shown.)

6 Conclusions
We have addressed the problem of estimating the direction
of motion parallax in local image regions, for the case of
an observer moving through a rigid 3D cluttered scene. As
in [15], we have taken a frequency domain approach, ex-
ploiting a bowtie distribution of power that arises from the
intersection of a set of motion planes. As in [5], we have
used a PCA method. The key contribution of the present
paper is to show how to collapse the 3D PCA problem to a
2D PCA problem, and thereby avoid motion compensation.

The experiments showed that the method performs bet-
ter when there are several different velocities present in the
local image region. The reason is that power is spread out

(a)

(b)

Figure 5: (a) Mean absolute angular errors for Plants se-
quence A (lateral translation only). (b) Mean absolute an-
gular errors for Plants sequence B (lateral translation + tilt-
ing).

over more motion planes. Since the motion planes intersect
at the bowtie axis, relatively large values of squared-power
are found near the bowtie axis, whereas relatively small val-
ues are found off-axis. This concentration of squared-power
near the bowtie axis drives the principal eigenvector of the
PCA toward the bowtie axis.

We also found that the estimates of the bowtie axis were
more accurate when the number of frames was sufficiently
large. For

e � � or � frames only, we found artifactual
concentrations of squared-power which arose from limited
sampling of the temporal frequency

)
-
. For

ew¢  
frames,

these artifacts are avoided.
The key feature of the new method is that it avoids mo-

tion compensation. This significantly speeds up the esti-
mate of the motion parallax direction, which allows the vi-
sion system to use these estimates more quickly. Once the
motion parallax directions have been estimated, the visual
system can use them to immediately estimate the observer’s
direction of translation. This heading estimate can be done
with traditional methods [17], which require as input only
the directions of local motion parallax. The key contribu-
tion of the present paper is to show how to obtain these es-
timates of motion parallax very quickly from a sequence of
images, without relying on optical flow and without having
to perform motion compensation.
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