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ABSTRACT

In this paper we propose an efficient, non-iterative method
for estimating non-parametric dense optical flow. We de-
velop a probabilistic framework that is appropriate for de-
scribing the inherent uncertainty in the brightness constraint
due to errors in image derivative computation. We sepa-
rate the flow into two one-dimensional representations and
pose the problem of flow estimation as one of solving for the
most probable configuration of one-dimensional labels in
an Markov Random Field (MRF) with linear clique poten-
tials. The global optimum for this problem can be efficiently
solved by using the maxflow computation in a graph. We de-
velop this formulation and describe how the use of the prob-
abilistic framework, the parametrisation and the MRF for-
mulation together enables us to capture the desirable prop-
erties for flow estimation. We demonstrate the performance
of our algorithm and compare our results with those of other
algorithms described in the performance evaluation paper
of Barron et. al [1].

1. INTRODUCTION

Motion estimation is an important problem since it arises in
different computer vision tasks. When the motion between
images is small, it is described by the optical flow defined
as the two-dimensional motion field between two differ-
ent views. Underconstant brightness assumption(CBA),
we can constrain the pixel motion along a single dimen-
sion. Since the flow at a pixel has two components, opti-
cal flow estimation is an inherently ill-posed problem. Most
methods overcome this limitation by “regularising” the flow
field, ie. by enforcing some form of smoothness on the flow
field [2, 3]. The CBA can also be cast as an energy min-
imisation, where the flow field is estimated by minimising
the least squares difference between two images [4, 5]. Lu-
cas and Kanade [6] compute the flow by “intersecting” local
brightness constraints over a small patch. The smoothness
problem can also be addressed by fitting a parametric global
motion model (eg. [7]). In this paper we are interested in
solving for the dense, non-parameteric flow while preserv-
ing discontinuities in the flow field.
Most estimation methods achieve a balance between the bright-
ness constraint and smoothness by minimising a cost func-

tion. Since they depend on iterative, non-linear techniques,
these methods are not guaranteed to converge to the global
minimum and thus give unsatisfactory results when they
converge to a local minimum. We overcome this limitation
by formulating the problem of flow estimation as a labelling
problem in a Markov Random Field (MRF) framework. For
certain classes of MRF’s, the exact Maximum A Posteriori
(MAP) estimate can be obtained efficiently by a maximum
flow computation on a graph. Being guaranteed to be opti-
mal, this computation avoids the problem of local minima.
Some recent methods that use the MRF formulation and a
graph-theoretic solution are [8, 9, 10].

Another significant problem in flow estimation is the com-
putation of image derivatives. Since the image is discretized
in the spatial, temporal and intensity dimensions, the accu-
racy of the discrete computation of spatio-temporal deriva-
tives is limited. This problem is partially addressed by so-
phisticated derivative filters. In practice the derivatives are
also corrupted due to deviations from the constant bright-
ness assumption such as change of illumination, brightness
scaling and specularities. Hence the brightness constraint
should not be considered to be a “true” rigid constraint. To
capture this notion of uncertainty, we cast the brightness
constraint in a probabilistic framework. A related exam-
ple of a probabilistic interpretation of optical flow is that of
Simoncelliet al [11] which we will discuss later.
In Section 2, we formulate the problem of optical flow esti-
mation. In Section 3 we develop the probabilistic interpre-
tation of the brightness constraint. The MRF formulation
and its solution are described in Section 4. In Section 5 we
discuss the results obtained using our method and compare
them with the results in Barronet al [1].

2. PROBLEM FORMULATION

The brightness constraint is derived assuming the constancy
of image brightness of a pixel. As a result, the total deriva-
tive of the intensity of a pixel with respect to the spatio-
temporal coordinates is zero. We have
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Figure 1: The Brightness Constraint and correspond-

ing conditional distribution of 
ow orientations. All
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whereI
x

, I
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andI
t

are the spatio-temporal image deriva-
tives andv

x

, v
y

are the components of flow along thex and
y directions. This constraint describes the equation of a line
(See Fig. 1). As previously mentioned, the brightness con-
straint has to be relaxed due to the inherent uncertainty in
image derivatives. As will be shown later, using simple and
intuitive priors in a Bayesian framework can yield useful
models of the CBA.

For convenience, we shall use the following notation through-
out the rest of the paper. The spatial derivatives[I

x

; I

y

] are
denoted asrI and the spatio-temporal derivatives[I

x

; I

y

; I

t

]

are denoted asI
d

. The flow at a given pixel is denoted asv,
ie. v = [v

x

; v

y

; 1].

The true spatio-temporal derivatives, denotedI

d

0, constrains
the flow vectorv to lie on the line described byI

d

0

� v = 0,
as shown in Fig. 1. In a probabilistic manner, we define
P (vjI

d

) as the probability of flow conditioned on the noisy
image derivativesI

d

. We define the error model for image
derivatives as

I

d

= I

d

0

+ n n � N(0;�) (2)

wheren is the error in our observation and is assumed to be
Gaussian distributed with zero mean and some covariance
�. To deriveP (vjI

d

), we use Bayes rule to obtain
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Since we have an additive noise model, the conditional prob-
ability P (I

d

0

jI

d

) is a Gaussian distribution with meanI
d

and covariance�. Hence given a prior distribution of flow
conditioned on the true image derivativesP (vjI

d

0

) we can
describe the desired conditional probabilityP (vjI

d

).

We would like to point out that Simoncelliet al [11] use a
similar probabilistic formulation. In fact, they describe the
same conditional probability as Eqn. 3. However, their for-
mulation differs from ours in two ways. First, their noise
model places the source of errors on the flow vectors in-
stead of the image derivatives. Secondly, their formulation
requires them to choose a prior distribution on the flow vec-
torsP (v). This prior is very hard to describe and changes
with the type of motion, distribution of depths in the scene
etc. Moreover, analytical tractability imposes a choice of
zero-mean, Gaussian distribution forP (v) which is seldom
realised in practice.

In our formulation we only need to choose the conditional
distributionP (vjI

d

0

), the flow probability given the true
image derivatives of a pixel. This prior is easier to moti-
vate and does not require knowledge of the global motion
patternsP (v). The selection of this prior and its impact on
the solutions is discussed in the following section.

3. PROBABILITY MODELS FOR THE
BRIGHTNESS CONSTRAINT

As it can be observed from Fig. 1 , the unknown compo-
nent of the flow vectorv lies on the CBA line and can be
parametrised by an angle�. This separates the space of pos-
sible values of� into an acceptable (shaded) and an unac-
ceptable zone. The acceptable zone is the half-circle cen-
tered on the normal flow vectorv

n

associated withI
d

0. The
requisite priorP (vjI

d

0

) can now be described as the condi-
tional prior of�.
In its weakest form the prior on� simply assumes that flow
orientations in the acceptable zone are equally likely (See
P (�jI

d

0

) in Fig. 1). The prior “kernel” is
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0 otherwise

where�
n

is the orientation of the normal flow vectorv
n

.
If desired any specific knowledge of flow can be used to
change the conditional distribution of flow orientations. As
an example, for strictly bounded flow magnitude the range
of acceptable angular deviations from�

n

can be reduced.

Since the true flow is fully determined by� the choice of
the conditional priorP (�jI

d

0

) automatically fixes the con-
ditional priorP (vjI

d

0

). It can be shown that

v = [cos(�); sin(�)]kv

n

k sec(� � �

n
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wherev
n

has a magnitude equal tokItk
krIk

. By combining
Eqn. 3, Eqn. 4 and Eqn. 5 we can expressP (vjI

d

) as a
function ofP (I

d

0

jI
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). However this function does not have
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Figure 2: Probability distributions of normal 
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a simple analytic form. In practice it will be evaluated nu-
merically.
Each pixel yields an image derivativesI

d

. Subsequently, we
generate a series of realisations drawn from the distribution
P (I

d

0

jI

d

). For each realisation, the prior kernel is accumu-
lated on the desired distribution,P (vjI

d

)

1. Intuitively the
conditional distribution of true flowP (vjI

d

) is the weighted
average of different orientation kernels where the weights
are determined by the conditional distributionP (I

d

0

jI

d

).

To illustrate the probability distributions described above,
Fig. 2 shows the normal flow and conditional flow distribu-
tionsP (vjI

d

) for three image derivatives,[20; 20; 10], [10; 10; 5]
and[4; 4; 2]. These derivatives correspond to the same nor-
mal flow vector of[�0:35;�0:35] observed in areas featur-
ing different amounts of image texture. The error in image
derivatives is modelled by a Gaussian distribution with a
standard deviation of1 in each of the spatio-temporal di-
mensions. For high levels of texture (I

d

= [20; 20; 10]),
the brightness constraint and the normal flow vector are re-

1For our experiments, we have used the kernel described by Eqn. 4 as
the conditional distribution,P (�jI

d
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Figure 3: Probability distributions of 
ow orienta-

tion and magnitude for di�erent amounts of texture.

Each column shows the conditional distribution of


ow orientation and magnitude (in pixels) for the

di�erent values of I

d

used in Fig. 2. The true orien-

tation is depicted by the vector. The true magnitude

is 0.5 pixels.

liable. Hence the resulting normal flow distribution is very
compact and the full flow distribution is uncertain only along
the brightness constraint line. In the case of medium texture
(I

d

= [10; 10; 5]), the uncertainty in both the position of the
normal flow vector and the full flow increases. When the
amount of image texture is low(I

d

= [4; 4; 2]), the degree
of uncertainty in both the normal and full flow values in-
creases significantly. This corresponds to the intuition that
the reliability of the normal flow and the brightness con-
straint depends on the amount of image texture present in
a local patch. In low texture areas this model does not pe-
nalise large deviations from the brightness constraint line.

In Fig. 3, we show the distributions obtained for the flow
orientation and magnitude using the same values ofI

d

as
in Fig. 2. As can be observed, the distribution of flow ori-
entations is essentially invariant to the amount of texture
available. However, the amount of texture significantly af-
fects the probabilites of flow magnitudes. In the case of
high texture, the normal flow is reliable, hence the full flow
magnitude has to be greater than the normal flow magnitude
(indicated by the vertical line). As the amount of texture de-
creases, the normal flow magnitude is less reliable and we
have an increase in the probability of flow magnitudes that
are less than the normal flow magnitude. This confirms the
intuition that unreliable normal flows should not overly re-
strict the range of full flow values. An extreme case would
be when there is no discernible motion, ie.I

d

� [0; 0; 0].
In this case the simulated orientation distribution is uniform
in the range[��; �]. As a result, the orientation of such a
pixel will be completely determined by the orientation of its
neighbours, due to the imposed smoothness.



4. SOLVING FOR OPTICAL FLOW

Most methods estimate optical flow by minimising a cost
function that trades off fidelity to the brightness constraint
with a local smoothness assumption on the flow field. Due
to depth discontinuities the flow field is typically piecewise
smooth, ie. it contains smooth motion patches separated
by large discontinuities. The enforcement of smoothness
causes the flow estimate to smooth across these boundaries
resulting in incorrect estimates of flow.

Generally, the resulting cost functions are minimised us-
ing iterative schemes for non-linear optimisations and are
not guaranteed to converge to the global minimum. By
formulating the flow estimation as a labelling problem for
a restricted class of MRF models, we can avoid iterative
methods and guarantee a globally optimal solution. The
exact Maximum A Posteriori (MAP) estimate of this la-
belling problem can be obtained by a transformation into a
maximum-flow problem on a graph. This global minimum
tends to preserve large discontinuities.
The maximum-flow solution to the MAP estimate of the
MRF requires the labels to be one-dimensional. Unfortu-
nately, the flow at every pixel is described by a two dimen-
sional vector. This forces us to parametrise the flow into two
one-dimensional spaces. For our implementation we chose
to parametrise the two dimensional flow field[v

x

; v

y

] into
a corresponding angle-magnitude representation[�;m]. In
Section 4.2 we will discuss our choice of this parametrisa-
tion in detail.

To motivate our formulation, we will very briefly describe
here the underlying concepts of MRF’s. The reader is re-
ferred to [12] for a more detailed discussion. Given a set
of sites (pixels) denoted byS = f0; � � � ;m� 1g, a discrete
labelling problem is one of assigning to each site a unique
label (orientation or magnitude) drawn from a set of labels,
L = f0; � � � ;M �1g. Each configuration of labels is drawn
from a family of random variablesF = fF

0

; � � � ; F

m�1

g.
The Markovian property of an MRF is defined to be such
that the probability of a site taking on a certain labelf

i

is dependent only on its neighbourhood. In general, this
probability is hard to define but the Hammersley-Clifford
theorem establishes that this probability can be related to a
“clique potential”V

c

(f) through the Gibbs distribution [12].
In other words

P (F = f) / e

�U(f) (6)

whereU(f) =

P

c�C

V

c

(f), ie. the clique potentials summed
over all cliques. We consider cliques over a local neighbour-
hoodN (in our case the neighbourhood is the 4-neighbour-
hood of a pixel). In a Bayes formulation, we are interested
in maximising the posterior probabilityP (F = f jX = x)

wherex is the observed data. Using Bayes rule, we can ob-
serve that

P (F = f jX = x) / P (X = xjF = f)P (F = f): (7)

Assuming that the noise is i.i.d., we can define the likeli-
hood term to be

P (X = xjF = f) =

Y

i�S

(X

i

= x

i

jF

i

= f

i

) (8)

where the product is over all sites, ie. all pixels. In sum-
mary, the MAP estimate can be rewritten as an energy min-
imisation problem where the energy is

E(f) =

X

i�S

X

i

0
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i

V (f
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)�

X
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ln(P (X
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i

jF

i

= f

i

)

(9)
which contains a contribution from the label configuration
and a contribution from the resulting clique potentials. Typ-
ically, the clique potentials reflect our prior knowledge of
the problem and in the case of optical flow they are used to
impose smoothness on the estimated flow field.

As mentioned earlier we want to solve the labelling problem
using a non-iterative, global minimisation method. We can
achieve this by expressingE(f) as a flow graph on which
a maximum-flow computation is performed. The average
computational complexity was experimentally measured to
beO(n1:15d1:31) wheren is the image size andd the num-
ber of labels. In this context we require the clique potential
V (:; :) to be linear, yielding a smoothness term of the form

V (f

i

; f

i

0

) = �jf

i

� f

i

0

j (10)

where� is a proportionality constant that controls the amount
of smoothness desired in the solution. While such aconvex
term allows an efficient computation of the global minimum
using the maximum-flow formulation, it should be noted
that it does not make the energy function of Eqn. 9 convex.

4.1. Maxflow solution for optical flow

As stated in the previous section, the cost function to be
minimized using maximum-flow computation is

E(f) =

X

i�S

X

i
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�jf
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� f
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ln(P (X
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)

(11)
The interested reader is referred to [8, 9] for details of the
maxflow formulation and the MRF interpretation. The garan-
tee of global optimality of the minimum cost cut associated
to the MAP estimate is discussed by Boykovet al [10] as
well as by Hishikawa and Geiger [9].
As mentioned earlier, our parametrisation of the flow field is
the(�;m) representation. To solve for the flow, we compute



the conditional probabilitiesP (�jI
d

) as described in Sec-
tion 3 by simply factorising the flow velocity distribution
P (vjI

d

) into is angle and magnitude componentsP (�jI

d

)

andP (mjI
d

) respectively. In order to solve for the orienta-
tion flow field� (denoting the configuration of orientation
for all pixels), Eqn. 11 now takes the form

min

�

X

i�S

X

i

0

�N

i

�j�

i

� �

i

0

j �

X

i�S

ln(P (�jI

d

i

) (12)

It may be noted that since the MRF scheme uses a finite
number of labels, we need to discretise the range of values
of � = [��; �] into a finite number of steps. In our ex-
periments we use a step sizes between1

� and4�. It might
appear that discretizing the pixel motion will generate large
errors compared to a non-discrete representation. Our ob-
servations show that this is not the case.
Having solved for the flow orientation, we need to solve for
the magnitudem for each pixel. We could solve for the
magnitude in the same way we solved for orientation. How-
ever in practice computing the magnitude is much more dif-
ficult than the orientation of the flow. We chose to modify
the conditional distributionP (mjI

d

) by taking advantage
of the extra information provided by the computed orienta-
tion estimate. We now haveP (mj�

s

; I

d

) where�
s

is our
solution for the orientation of a pixel. This modification is
found to dramatically improve performance. This can be
explained by the fact that the orientation estimate restricts
the full flow to a line thereby reducing the uncertainty of the
magnitude distribution. In other words, this new conditional
distributionP (mj�

s

; I

d

) is much more representative of the
true flow magnitude since the ambiguity along the bright-
ness constraint has been removed. By combining the two
estimates ie.� andm we obtain the optical flow between
the two images.

4.2. Parametrisation of two-dimensional flow

As mentioned earlier, the optical flow is parametrised into
two one-dimensional representations. It is desirable that
these two parameters are as independent of each other as
possible. We considered two alternatives, the angle-magnitude
representation(�;m), and the velocity components(v

x

; v

y

).
To determine the best representation, we experimentally mea-
sured the cross-correlation coefficient2 for each representa-
tion. For a large number of typical image derivatives (500

experiments), we generated the corresponding conditional
distributionsP (vjI

d

) and computed the cross-correlation
coefficients for the two different parametrisations. The av-
erage value of� was found to be0:04 for the (�;m) rep-
resentation and0:4 for the (v

x

; v

y

) representation. Clearly

2The cross-correlation coefficient is defined as� =

E[(a��
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the (�;m) representation is almost independent while the
(v

x

; v

y

) representation is not. Therefore our choice of the
angle-magnitude parametrisation is appropriate.

5. RESULTS AND DISCUSSION

In this section, we evaluate the performance of our algo-
rithm by using synthetic and real datasets from Barronet al.
[1], as well as comparing our results with those of various
methods also mentioned in [1].
In our implementation, the computation of image deriva-
tives consists of applying a spatio-temporal Gaussian filter
(� = 1:5) followed by a 4-point difference operator
1

12

[�1; 8; 0� 8; 1]. The algorithmHorn and Schunk mod-
ified from [1] uses the same derivative computation. Run
time for most experiments range between a few seconds
for small images and upto 10 minutes on large images on
a fast workstation. These run times can be easily reduced
by using a coarser discretization of the motion parameters
without significantly affecting the solutions. All results pre-
sented in this section are the raw flow fields obtained by our
algorithms without applying any post-processing.

5.1. Synthetic Images

Our algorithm was run on 5 synthetic sequences of [1], for
which ground truth was provided. We compared our results
with those of the 5 algorithms in [1] that yield100% flow
field density. We do not directly compare with non-dense
methods since our formulation is specifically designed to
estimate dense flow fields and cannot be readily modified
to yield sparse fields. The error measure is the same as the
one used in [1]. For two motions[u

0

; v

0

] and[u
1

; v

1

], it is
defined as the angle between the two vectors[u

0

; v

0

; 1] and
[u

1

; v

1

; 1]. The results are summarized in Fig. 4. Our per-
formance on these datasets is consistently good. However,
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these datasets all feature very smooth motion fields which
do not reveal the behaviour of algorithms near motion dis-
continuities. Also, they contain no noise or other pixel in-
consistencies. Those are important aspects of optical flow
computation on real images, which are handled especially
well by our method.

The most striking result is forSquare2, where we out-
perform all other methods by orders of magnitude. This
is a case where very sparse derivative information is avail-
able and therefore demonstrates the advantage of enforcing
smoothness globally rather than locally. We also notice that
we perform consistently better than the correlation-based al-
gorithms (Anandan, Singh) and never much worse than
any other method.

5.2. Real Images

To demonstrate the performance of our algorithm under re-
alistic conditions, we computed the flow for4 real images
(see Fig. 5). These are the familiarRubic Cube, Hamburg
Taxi, SRI-Trees andNASA Sequence also discussed in
Barronet al. [1]. Since no ground truth is available, we can
only display qualitative results. For a comparative evalua-
tion with the other algorithms evaluated by Barronet al, we
recommend that the reader consult [1]. For convenience, a
copy of all the relevant results from [1] is available at the
end of this paper.
The estimated flow field for theRubic Cube is displayed in
Fig. 6. This data set features a cube rotating on a turntable.
We observe that the flow closely follows the motion of the
turntable and the cube in both orientation and magnitude.
The flow is well propagated over textureless regions like the
top of the turn table. Moreover, motion discontinuities are
well preserved. A closer look at the flow field is provided in
Fig. 7.
The NASA Sequence features a divergent flow field in-

Figure 6: Estimated 
ow �eld for the Rubic's cube.

The motion estimate is accurate and the discontinu-

ities are preserved.

duced by a camera zoom. The magnitudes of the motion are
very small, typically much less than1 pixel. As illustrated
in Fig. 8, the divergence of the flow is well recovered. No-
tice errors in the middle of the Coke can mostly induced by
specularities coupled with low motion.

TheHamburg Taxi sequence is an example of multiple in-
dependent motions. Three vehicles are moving indepen-
dently across the sequence. The resulting flow is shown in
Fig. 9. The motions of the vehicles are well recovered and
well localised, making it possible to segment the motions by
using a simple thresholding of the motion magnitudes. This
is an example where accurate recovery of motion disconti-
nuities is critical.

The SRI-Tree sequence features a horizontally translating
camera. It features large amounts of occlusions and low
contrast. Because of the unusual camera motion, the mag-
nitude of the motion is equivalent to the scene depth. There-
fore the result in Fig. 10 is displayed as a depth map. Dark
regions represent small motions (large depths) and light re-
gions represent large motions (small depths). The result is
very close to those obtained by dedicated stereo algorithms
that utilise the knowledge of camera motion and hence are
expected to perform well. Depth discontinuities are are well
recovered as can be seen along the tree trunks in the middle
of the image. On the other hand notice that the planarity
of the ground surface is well preserved . This demonstrates
that we can both enforce high degrees of smoothness and
recover sharp discontinuities.



Figure 7: Zoomed view of the 
ow �eld for Rubic.
The three di�erent types of motion present, those

of the cube, the turntable and the background are

accurately recovered.

Figure 8: Estimated 
ow �eld for the NASA image

pair. The true motion is a divergence.

Figure 9: Hamburg Taxi sequence. An example of

multiple, independent motions



Figure 10: Motion �eld for SRI Trees presented as

depth map. Dark regions are far and light region are

close by.

6. CONCLUSION

In this paper we have introduced a new method for estimat-
ing optical flow in a probabilistic framework. We explicitly
account for the inherent inaccuracy of image derivatives us-
ing a simple noise model which in turn results in a proba-
bilistic model of the full flow. By separating the flow into its
angle-magnitude components, we compute the full flow in
two steps, each based on a MAP estimate of an MRF with
linear clique potentials. These estimates are optimal and
obtained efficiently through a maximum-flow computation
over a graph. The recovered flow fields are dense and retains
sharp motion discontinuities. We believe that careful prob-
abilistic modeling can achieve high levels of robustness to
the significant errors inherent to the problem of optical flow
estimation.
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