Omnistereo video textures without ghosting

Vincent C.-Couture
Université de Montréal
chapdelv @iro.umontreal.ca

Abstract

An omnistereo pair of images provides depth informa-
tion from stereo up to 360 degrees around a central ob-
server. A method for synthesizing omnistereo video tex-
tures was recently introduced which was based on blending
of overlapping stereo videos that were filmed several sec-
onds apart. While it produced loopable omnistereo videos
that can be displayed up to 360 degrees around a viewer,
ghosting was visible within blended overlaps. This paper
presents a stereo stitching method to render these overlaps
without any ghosting. The stitching method uses a graph-
cut minimization. We show results for scenes with differents
types of motion, such as water flows, leaves in the wind and
moving people.

1. Introduction

Traditional stereo imaging uses two cameras converging
at some depth to capture two videos of a scene from slightly
different viewpoints. The stereo pair can then be displayed
using a stereo projector or monitor and, using stereo glasses
or an autostereoscopic display, users can fuse the stereo im-
ages and enhance their perception of scene depth.

This paper addresses the problem of capturing omni-
stereo video. Here, the stereo video to be displayed should
cover a very wide field of view — up to 360 degrees. Om-
nistereo video can be used in immersive environments to
provide stereo cues all around an observer looking in an un-
known direction, for instance, in CAVEs [10, 9, 19, 3, 4] for
navigation in a virtual environment. Another potentially in-
teresting application is to use existing consumer level desk-
top stereo displays or stereo TV. Allowing a user to actively
pan over a 360 degree panorama could improve the user ex-
perience in applications such as Google Street View [2].

The standard approach for synthetizing omnistereo im-
ages of static scenes is to use a conventional stereo video
rig where two cameras follow a circular motion and cap-
ture a space-time volume of images [14, 13, 19, 20]. From
these two 3D space-time volumes, one extracts a few hun-
dred small field of view stereo “slits” and stitches them to-

Michael S. Langer
McGill University
langer@cim.mcgill.ca

Sébastien Roy
Université de Montréal
roys @iro.umontreal.ca

gether to produce a single larger field of view static stereo
pair '. The stereo slits capture scene points on the median
plane perpendicular to the baseline of the camera rig, and
hence give maximum stereo disparity information [20].

As the stereo rig is rotated, each camera rotates but also
translates. The translation introduces some parallax from
frame to frame which produces visible seams when the im-
ages boundaries are stitched together. The advantage of us-
ing many small slits is that the slit-to-slit camera transla-
tion is small and so is the parallax. An alternative method
for reducing parallax in stereo panoramas is to use large
stereo frames, which are chosen such that the left edge of
one frame and the right edge of the next frame lie on the
line through the two camera positions [0, 8]. See Figure 1.
This method eliminates horizontal stitching misalignments
that are due to parallax at the frame edges, though vertical
stitching misalignments can still occur at the top and bottom
of the edges of the frames [8].

The method of [8] used large stereo frames to produce
omnistereo video textures that are loopable in time [22].
The main limitation of that method is that it used simple
blending to handle overlaps between frames. It was shown
[7] that this blending method works fine for certain types
of motions such as water waves, but that it produces notica-
ble ghosting [1] for motions of well-defined visual features
that can be tracked over time.

The contribution of the present paper is to improve the
method of [8] by replacing the blending method with a
graph cut based stitching method which finds an optimal
seam between overlapping full frame stereo videos.

The paper is organized as follows. Section 2 briefly re-
views previous work related to monocular panorama stitch-
ing of dynamic scenes. Section 2.1 summarizes the work
presented in [8] which produces omnistereo videos using
blending. Section 3 presents the new method to render
overlapping regions, which uses a graph-cut minimization
to find an optimal seam. Section 4 gives experimental re-
sults on a few scenes. We conclude in Section 5.

! Alternatively, Peleg et al. [20] showed how to extract stereo slits from
a single space-time volume.

R(A+T) oo R(1)

A— *,V

O

Figure 1. For a stereo rig with parallel cameras L and R, we con-
sider two scene points (indicated by small black circles) that lie
in the plane that contains the stereo camera motion and that enter
and then exit the field of view of the right camera at times t and
t+T respectively. Note that the points are colinear with these two
camera positions.

2. Previous work

In addition to the slit-based method mentioned in Sec. 1,
a related set of methods have been proposed for rendering
monocular panoramas of captured dynamic scenes. These
methods rearrange either slices [21] or small 3D blocks [1]
from a monocular space-time volume, so as to avoid visual
seams between the slices or blocks. An example is the dy-
namosaicing method [21] which uses graph cuts to com-
pute a time evolving surface in a video’s space-time volume
and then makes a video mosaic by stitching the surfaces to-
gether. A second graph cut based approach [1] is panoramic
video textures. This method renders a video seen by a ro-
tating camera. Rather than selecting and stitching together
slices in the space-time volume, it selects and stitches small
space-time blocks. Such methods have been used success-
fully to generate panoramas from videos taken by a (purely)
rotating camera.

To extend these block (or slit/slice) methods to stereo
video, one needs to find corresponding blocks in two space-
time volumes. The challenge is that the corresponding
blocks must capture the same scene points at the same
time, otherwise the temporal asynchrony of a moving point
will produce incorrect stereo disparities and occlusion cues,
namely when a scene point is occluded over some set of
frames. Rather than using small blocks to compute stereo
motion correspondence, it has been shown that one can use
large space-time blocks, namely full frames [8]. The idea
is that these full frames automatically capture correct stereo
correspondence, except near the left and right edges of the
frame. We summarize the method of [8] in the next section.

2.1. Omnistereo video texture using full frames

The problem formulation is as follows. A pair of videos
is captured by a stereo rig rotating around a vertical axis.
Each camera follows a circular path for a full 360 degrees.
All frames are first registered to form a stereo XYT vol-
ume. This requires autocalibrating the two cameras’. Let
the left/right volumes have N frames each, frame N is reg-
istered with frame 0. To simplify the explanation of the
method, we assume camera rotation speed is constant as if
it were controlled by a motorized tripod head. In a more
general situation of a manually guided rotation (as in our
case), the space time volume is “rectified” by temporally
interpolating the original frames.

The left and right space-time volumes are each parti-
tioned into blocks of T frames which are shifted in time
to start at frame 0, which yields a larger field of view video.
Figure 2 shows an example in which the entire stereo video
is 120 seconds long and is partitioned into five blocks that
are 24 seconds each. T' is chosen so that the overlap width
between blocks is a third of the original frame width. For
a input stereo sequence of about 2 minutes, using such a T’
value yields between 10 and 12 block overlaps.

In [8], the frames within overlap regions were blended
together using a simple linear ramp function. Such blending
introduced ghosting of moving scene points within the left
or right videos. While the disparity of each stereo block is
correct, the blending of two overlapping stereo blocks cre-
ates ghosting [1 1] which is visually salient in many com-
mon cases. Examples are leaves and branches swaying in
the wind [7] or people walking. The main motivation and
contribution of the present paper is to present an alternative
method for dealing with the overlap between neighboring
stereo frames which avoids ghosting.

3. Avoiding ghosting using graph cuts

We present a method to find an optimal seam within the
overlap region between neighboring frames and stitch the
frames together at this seam. Rather than blending, we use
a graph-cut method similar to [16] to find an optimal seam
between the two blocks within an overlap. We first con-
sider the monocular case in Sec. 3.1 and define the graph
and the cut. We then describe how to adjust exposure dif-
ferences between blocks in Sec. 3.2. This is necessary be-
cause the scene’s dynamic range is typically large and the
cameras’ exposures are adjusted automatically as the rig is
rotated. We extend the graph cut method to the stereo case
in Sec. 3.3.

2Camera parameters include focal length, radial distortion as well as
the position and orientation of the camera at each frame.

Figure 3. Evolution of the optimal seam between two blocks as the overlap moves from left to right over time.

time (sec.)
120

100

80

60

40

20

x (pixel)

0 2000 4000 6000 8000

(a)

x (pixel
4000 6000 8000 (pixel)

(b)

Figure 2. For a frame sequence captured by a camera performing
a full turnaround in N = 57 seconds at constant speed, the cut
finds a low cost seam between the right border of a frame and
the left border of frame 7" seconds later. (a) The continuous cut
shown twice in the full original space-time volume divided in five
non-overlapping blocks. (b) The same continuous cut shown with
blocks aligned to start at the same time. The overlap regions are
indicated in gray.

3.1. Monocular seam

In [16], a texture (image or video) is synthesized by
stitching together several patches or space-times blocks. An
optimization is required to find both the location and the
shape of a patch. The problem we solve here is more con-
strained. The locations of all the video blocks and their
overlapping regions are fixed, and the goal is to find an op-
timal seam between the two blocks in each overlap regions
(see Fig. 2.)

This problem can solved using a graph-cut minimization
[5] in the following way. We use a matching cost that mea-
sures pixel differences between the two blocks within the

overlap [16]:

Cononols, 4, B) = | A(s) = B(s)|| + || A(s + 1)~ B(s + 1)

ey
where A() and B() are the pixel luminances in block A
and B, respectively, and s and s + 1 are two adjacent pixel
positions in space or time. (An RGB distance could also
be used.) The above cost function assumes brightness con-
stancy of a pixel. This assumption typically does not hold
for raw image intensities, since the camera automatically
adjusts exposure during rotation. We handle this with a pre-
processing step which is discussed in Sec. 3.2.

By definition, the graph cut finds a surface in XYT such
that the sum of pixel differences across the surface is a min-
imum. All arcs connecting adjacent pixels s and s + 1 are
given flow capacity Cpono(s, A, B). Constraint arcs with
infinite capacity are also added to ensure continuity with
pixels outside the overlap, namely nodes to the left of block
A in the overlap are linked to a source node, and nodes to
the right of block B in the overlap are linked to a sink node.

While the results in [16] show that the optimal cut usu-
ally varies locally where motion is minimum, in our case
the moving overlap forces the cut to move (see Fig. 3). Typ-
ically, the cut stays for many frames at roughly the same
location, adjusting itself to motion in the two blocks. But
as the overlap eventually shifts away from this location, the
cut must jump to another location. The cost minimization
reduces the chance of having a visible “jump” of the cut. An
optimal jump is chosen such that the two frames have sim-
ilar intensities. There is no guarantee, however, that there
will exist a cut such that the positions of scene points in the
two block videos can be perfectly aligned across the cut. To
reduce these jump artifacts, we use a feathering kernel in
both in space and time to blend the two blocks in a small
neighborhood of the cut (10 pixels in each spatial direction
and 10 frames in time), rather than directly stitching them
together at the seam. This adds a small amount of ghost-
ing around the cut, but much less than in [8] where a large
blending window (width of 320 pixels) covering the whole
overlap was used.

We solve for the cuts of neighboring blocks sequentially,
adding constraint arcs from a node to the source or sink to
enforce that the cut of the first frame of an overlap is the
same as the cut of the last frame in the previous overlap.

(a)
Figure 4. Optimal transition for a single frame within an overlap rendered (a) using the original intensities. (b) after a histogram equalization
of the darker block of frames so that it matches the lighter block.

One could solve one global cut, and enforce that the cut
ends at frame N at the same pixel locations it started at
frame 0. But this would have been more memory intensive
and would have reduced performance.

3.2. Exposure Adjustment

As stated above, the method assumes brightness con-
stancy within overlaps, that is, A(s) and B(s) have the
same luminance (or RGB) if they correspond to the same
scene point. This assumption will typically break even in
the case of static Lambertian surfaces if cameras automati-
cally adjust exposure as the cameras rotate. Such exposure
compensation is to be expected in real scenes, since the dy-
namic range varies considerable across a scene. Therefore,
we needed’ to make exposure adjustments before the graph
cut is computed.

Suppose, for example, that the mean scene luminance
in the window in block A were less than in the overlap-
ping block B at some frame. Our videos are shot in shut-
ter speed priority mode, and so the camera would adjust
the f-number when capturing A by reducing it relative to
B. As a result, scene points that are visible in the over-
lap of A and B would be be overexposed in A relative to
B. We compensate for such differences in exposure by ap-
plying a histogram transfer function for each color channel
which maps the histogram of the darker block B so that it
has the same histogram as the lighter block A. The transfer
function we use is based on the histogram matching method
[12, 17]. Fig. 4(a) shows a frame using the original inten-
sities on each side of the cut. Fig. 4(b) shows the adjusted
intensities, namely the intensities in the right side (block

3Note that one could avoid this problem by using high dynamic range
video cameras [!5] and tone mapping tricks, but we wished to see what
could be achieved with consumer level cameras.

e

(b)

B) have been increased. We found that we needed to ad-
just the intensities up rather than down because adjusting
down caused partly saturated pixels to take on the wrong
hue. We also needed to adjust the intensities outside the
overlap region since otherwise we would have an intensity
discontinuity between the raised region in the AB overlap
and the non-raised region in B which is to the right of the
AB overlap. We did so by applying an intensity histogram
transfer in the non-overlapping region of B. Specifically,
we decreased the magnitude of the histogram adjustment
gradually from the edge of the AB overlap across B and
up to the start of the next overlap region (BC'), at which
point the histogram adjustment is zero. Finally, if B was
also underexposed relative to the next region C, then a con-
vex combination of two histogram adjustments was needed
in the non-overlap region in B, between A and C'. The for-
mula we used for the adjusted intensities at a pixel in the
non-overlapping region in B in this case was

Tnew = original + (Jé(AI)AB + (1 - a)(AI)BC

where o € [0, 1] is the fraction of the distance from the right
edge of A to the left edge of C, and the AI are the inten-
sity adjustments needed at that pixel to compensate for ex-
posure differences as determined by the histogram transfer
function. For the situation in which B has lower exposure
than only one of A or C, just one of the terms containing «
is used. If B has a greater exposure than both A and C, then
no adjustment in the non-overlapping region in B is needed.

Note that this histogram adjustment is a pre-processing
step. It is done before the graph cut is computed and so the
cost function is defined by these adjusted RGB intensities.
These adjusted intensities are used in the rendering as well.

3.3. Stereo seams and window violations

We now turn to the problem of computing the graph cut
for the stereo pair. Rather than computing the cuts in the
left and right panoramas independently using the scheme
outlined in Sec. 3.1, we incorporate the disparity d of the
cut as part of a single graph cut minimization. For this we
define a stereo cost at each edge in the graph:

Cstereo(sv da Aa B) - Cmono(s + d) Alv Bl)
+ Cmono(sa A, Br) ()

where s is a pixel position in a panorama and A;, B; and
A,, B, are overlapping video blocks in the left and right
camera, respectively, and disparity d is the difference in z
position of the cut in the left vs. right frames at any seam
point.

Several versions of this scheme are possible. A simple
one, which we use, is to fix d in advance to be approxi-
mately the maximum disparity in the scene. This matches
the disparity of the cut to that of closest objects, which typ-
ically draw more attention from viewers since they are in
the foreground. Alternative schemes which are more com-
plicated include solving for d as part of the graph cut min-
imization, or trying to estimate d at each pixel and each
frame using a stereo-motion algorithm and then imposing
the computed values of d in the cost function.

Note that when the disparity d of the cut is different from
that of some scene point, there will be frames in which that
scene point is visible to one camera but not the other. In
standard 3D cinematography, this situation is not a problem
as long as the depth of the scene point is greater than the
depth of the stereo window, i.e. avoiding the window vio-
lation problem [18]. However, for panoramic stereo videos
with seams, the situation is more complicated because there
is no stereo window behind which such points can be partly
occluded. When such scene points are not moving, there is
no problem with having an “incorrect” disparity of the cut
since the point’s position within the left or right frame will
not change as the cut passes over it, and so the cut will not
be visible. However, if a point is moving then it may not be
possible to find the correct cut even if one knows the dispar-
ity d of a scene point. The problem is that the seam stitches
together points that are separated in time by 7" frames. For
scene points that are moving, their image positions and dis-
parities at time ¢ and ¢ 4+ 71" will in general not be the same.

The cost function that we use is not designed to solve
this more general stereo-motion window violation problem.
Rather, it is designed simply to find seam positions that min-
imize the intensity differences for the chosen disparity d.
This solution produces cuts that are typically not visible in
practice.

4. Experiments

Stereo videos were captured using two Canon HFSI11
cameras on a fixed tripod with a rotating head. The distance
between the centers of both lens was 6.5 cm, similar to the
typical distance between human eyes. The field of view was
55 degrees. To synchronize frame capture and zoom, both
cameras were controlled through the LANC protocol.

All computations were performed on a laptop (Intel dual
core T7500 processor, 2GB of RAM). To speed up per-
formance, we down-sampled the HD original content from
1920 x 1080 resolution to 960 x 540. The resolution of the
final videos was about 7000 x 540 pixels. Each overlap re-
gion covered 320 x 540 pixels (i.e. a third of a full frame).
The graph cut between neighboring blocks was solved at
quarter resolution, i.e. 80 x 135 pixels. Each block was
typically 200 to 300 frames. Solving the cut for each block
took about 30 seconds of CPU time.

We present three scenes, namely Boats, River and
Park. See Fig. 5 for a third of a single frame of each of
the resulting panoramas, presented as red/cyan anaglyphs.
The reason we show a third of a frame only is that the
12:1 aspect ratio (horizontal:vertical) of the entire frame is
very large and the vertical dimension would be excessively
squeezed if we presented the entire panorama.

The motion in the scenes is mostly texture-like, e.g. wa-
ter flow and leaves in the wind. While it was shown in
[7] that blending already gives good results for water, our
graph-cut technique clearly creates less ghosting for leaves
and other vegetation for all scenes we have tried. For ex-
ample, Fig. 6(a,b) compares single frames for a video con-
taining foliage blowing in the wind. In the blended case (a)
which uses the technique of [8], ghosting of the leaves is
severe. The graph cut case (b) has no ghosting visible.

The scenes also contain various examples of non-texture
like motions, such as people playing cards, walking or rid-
ing a bicycle. Fig. 6(c,d) shows that the moving men are
ghosted in (c) but not in (d). In this example, the graph cut
finds a seam where the positions of the people are roughly
aligned in the two images. While the graph-cut technique
works well when people remain near the same area, it is
not well suited when objects or people undergo significant
position change over time, such as a moving car or a per-
son walking across the scene. This is the main difference
between video texture methods and general video meth-
ods. Nonetheless, we observe that the cut gracefully han-
dles some cases in the presence of natural occluders. For
example, if someone is walking and happens to be occluded
by a tree when in an overlap, then the cut makes the person
disappear as he/she will remain hidden behind the tree. See
River sequence in the supplemental material. However,
if there is no such natural occluder, then the person disap-
pears behind an “invisible” occluder defined by the cut. An
example can be found in the Park sequence.

Figure 5. Third a frame (120° field of view out of the full 360°) in the omnistereo videos of our three result scenes, namely (a) Boats

(b) River and (c) Park. For the reader’s convenience, left/right frames have been converted to grayscale and are presented as red/cyan
anaglyph.

(a) blending (b) graph cut (c) blending (d) graph cut

Figure 6. Comparison of a single frame in an overlap of a video containing (a,b) foliage blowing in the wind or (c,d) moving people. In
both examples, ghosting is reduced considerably when using thin feathering around an optimal cut (b,d) compared to using large blending
as in [8] (a,c).

5. Conclusion

We have presented an improved method for computing
panoramic stereo video textures using a pair of off-the-shelf
consumer video cameras. The method uses the full frame
video which gives automatic stereo motion synchronization
for the vast majority of the visible points. The main contri-
bution is to improve the method of [8] which used blending
to combine overlapping regions, and which often resulted in
ghosting for regions containing motion. Instead of blend-
ing, our method computes an optimal transition — specifi-
cally, a graph cut — in the overlap region between neighbor-
ing blocks. This transition was shown to work better for
certain texture like motions such as foliage, which create
ghosting when blended.

References

[1] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala,
M. Cohen, B. Curless, D. Salesin, and R. Szeliski.
Panoramic video textures. ACM Transactions on
Graphics, 24(3):821-827, 2005. 2

[2] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon,
R. Lyon, A. Ogale, L. Vincent, and J. Weaver. Google
Street View: Capturing the world at street level. Com-
puter, 43(6):32-38, June 2010. 1

[3] P. Bourke. Synthetic stereoscopic panoramic images.
Lecture Notes in Computer Science (VSMM 2006),
4270:147-155, 2006. 1

[4] P. Bourke. Omni-directional stereoscopic fisheye
images for immersive hemispherical dome environ-
ments. Computer Games and Allied Technology,
pages 136—-143, May 2009. 1

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-
mate energy minimization via graph cuts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
23,2001. 3

[6] V. Couture, M. S. Langer, and S. Roy. Capturing
non-periodic omnistereo motions. In 10th Workshop
on Omnidirectional Vision, Camera Networks and
Non-classical Cameras (OMNIVIS), Zaragoza, Spain,
2010. 1

[7] V. Couture, M. S. Langer, and S. Roy. Perception of
blending in stereo motion panoramas. ACM Transac-
tions on Applied Perception, 9(3), 2012. 1,2, 5

[8] V. Couture, M. S. Langer, and S. Roy. Panoramic
stereo video textures. IEEE International Conference
on Computer Vision (ICCV), Nov. 2011. 1, 2, 3, 5, 6,
7

[9] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.
Surround-screen projection-based virtual reality: the

design and implementation of the cave. In ACM SIG-
GRAPH Proceedings, pages 135-142, New York, NY,
USA, 1993. 1

[10] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V.
Kenyon, and J. C. Hart. The cave: audio visual experi-
ence automatic virtual environment. Communications
of the ACM, 35(6):64-72, 1992. 1

[11] J. Davis. Mosaics of scenes with moving objects. In
IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), pages 354 =360, 1998. 1,2

[12] R. C. Gonzalez and R. E. Woods. Digital Image Pro-
cessing. Addison-Wesley Publishing Company, 1992.
pp. 173-182. 4

[13] H.-C. Huang and Y.-P. Hung. Panoramic stereo
imaging system with automatic disparity warping and
seaming. Graphical Models and Image Processing,
60(3):196-208, 1998. 1

[14] H. Ishiguro, M. Yamamoto, and S. Tsuji. Omni-
directional stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):257-262,
1992. 1

[15] S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High dynamic range video. ACM Trans.
Graph., 22(3):319-325, July 2003. 4

[16] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bo-
bick. Graphcut textures: Image and video synthesis
using graph cuts. ACM Transactions on Graphics,
22(3):277-286, July 2003. 2, 3

[17] J. S. Lim. Two-Dimensional Signal and Image Pro-
cessing. Prentice-Hall, 1990. pp. 453-459. 4

[18] B. Mendiburu. 3D Movie Making: Stereoscopic Dig-
ital Cinema from Script to Screen. Focal Press, 2009.
5

[19] T. Naemura, M. Kaneko, and H. Harashima. Multi-
user immersive stereo. IEEE International Conference
on Image Processing, 1:903, 1998. 1

[20] S. Peleg, M. Ben-Ezra, and Y. Pritch. Omnistereo:
Panoramic stereo imaging. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(3):279—
290, 2001. 1

[21] A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg.
Dynamosaicing: Mosaicing of dynamic scenes. I[EEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 29(10):1789-1801, 2007. 2

[22] A. Schodl, R. Szeliski, D. H. Salesin, and I. Essa.
Video textures. In ACM SIGGRAPH Proceedings,
pages 489—-498, New York, NY, USA, 2000. 1

[23] H. Woeste. Mastering Digital Panoramic Photogra-
phy. Rocky Nook, 2009.

