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PURPOSE: To assess the accuracy of the scanning electron microscopy (SEM) and present alter-
native approaches to quantify surface roughness based on numerical analysis.

SETTING: Department of Ophthalmology, Maisonneuve-Rosemont Hospital, University of Montreal,
Montreal, Quebec, Canada.

DESIGN: Experimental study.

METHODS: Lamellar stromal cuts were performed on human corneas using a femtosecond laser or
a microkeratome. The photodisrupted stromal surfaces were processed for SEM, and images were
acquired at !1000 magnification. First, images were evaluated by independent observers. Second,
images were analyzed based on first-order and second-order statistics of gray-level intensities.
Third, 3-dimensional (3-D) surface reconstructions were generated from pairs of SEM images
acquired at 2 angles.

RESULTS: Results show that traditional assessment of roughness based on evaluating SEM images
by independent observers can be replaced by computer-image texture analysis; an algorithm was
developed to avoid subjective and time-consuming observations. The 3-D reconstructions allowed
additional characterization of surface properties that was not possible with SEM images alone.
Significant fluctuations in surface height were lost, although they could be retrieved using 3-D
reconstructions.

CONCLUSIONS: Image texture analysis allowed objective and repeatable assessment of stromal
surface roughness; however, full assessments of surface-height fluctuations required 3-D
reconstruction. These complementary methodologies offer a more comprehensive assessment
of corneal surface roughness in clinical applications.
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Whether performedwith a laser or mechanically using
a blunt dissector, a blade, or amicrokeratome, lamellar
dissection of the cornea has become routine practice
for corneal surgeons worldwide. The 20 330 lamellar
corneal transplants reported in 2010 by the Eye Bank
Association of America1 and the 700 000 laser in situ
keratomileusis surgeries performed every year in the
United States2 illustrate well the wide acceptance of
this practice. Surface smoothness appears to be one
of the most important parameters in assessing the
quality of a lamellar stromal cut. A smooth surface is
believed to ensure a more uniform interface, with
less scarring, improved light transmission, greater

contrast sensitivity, less optical aberrations, and over-
all better vision.3–7

Scanning electron microscopy (SEM) images are
commonly used to assess the smoothness of a corneal
lamellar cut generated using a new surgical technique
or new laser parameters. Most frequently, the degree
of roughness of SEM images is determined subjec-
tively by 1 or more observers,8–11 sometimes using as
a reference a series of 4 or more standard images12,13

or assigning scores based on the dissected surface
characteristics.14–18 In this context, numerical SEM
image analysis would bring an advantage in terms of
accuracy, reproducibility, and speed of evaluating
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the quality of stromal cuts and optimizing new tech-
nologies involving corneal dissections.

An interesting first objective approach used the
standard deviation (SD) of the gray levels in SEM im-
ages as a quantitative estimation of corneal-surface
roughness.8,19,20 However, a drawback of this ap-
proach is that gray levels in SEM images reflect the
amount of secondary electrons detected and not the
height of the surface. The amount of secondary elec-
trons emitted in all directions by a homogeneously
metal-coated SEM corneal sample largely depends
on the angle subtended between the electron beam
and the local sample surface and, as a first approxima-
tion, the signal is inversely proportional to the cosine
of such angle.21 Therefore, gray-level contrast is an in-
dication of a change in height (i.e., local slope) rather
than the height itself. Hence, the texture of a corneal
image is correlated with the surface roughness, even
if a roughness coefficient, in terms of surface height,
cannot be simply calculated from single SEM images.

First-order and second-order statistics on gray levels
of SEM images can provide quantitative information
on surface roughness. In first-order statistics, each
pixel contained in the image is regarded individually.
Mean values and SDs are calculated using the gray
levels associatedwith each pixel and are used as image
descriptors. Second-order statistics go a step further;
pairs of pixels with a specified relative distance and
angle are compared to characterize the texture of the
image. Second-order statistics basically provide infor-
mation about the presence of different intensity pat-
terns and their distribution inside the image.22

The goal of this study was to improve the analysis
of SEM images to obtain a quick and objective
classification of corneal roughness. We first present
methodologies based on numerical texture analyses
of SEM images to obtain such information. This ap-
proach provides objectivity and repeatability, avoid-
ing intraobserver and interobserver variability
associated with human perception of roughness. Sec-
ond, we show how 3-dimensional (3-D) reconstruc-
tions of the corneal surface from stereo SEM images
can be performed to quantify surface roughness.
A comprehensive study of these techniques and their
correlation with traditional subjective observations is
also presented.

MATERIALS AND METHODS

Corneal Sample Preparation

Human globes unsuitable for transplantation were ob-
tained from the local eye bank (Banque d'Yeux du Qu!ebec,
Montreal, Quebec, Canada) within 24 hours after
death and preserved at 4"C in a humid chamber for a maxi-
mum of 48 hours. Corneas were mechanically deepithelial-
ized, and a stromal lamellar dissection was performed with
a femtosecond laser (n Z 22 samples) or a microkeratome
(n Z 12 samples).

For the laser lamellar cuts, globes were placed in a holder
with an 18.0 mmdiameter round opening and pressurized at
18 mm Hg by injecting saline into the vitreous. An applana-
tion suction ring was applied to the anterior surface of the
cornea, and saline solution was pipetted to maintain humid-
ity of the surface. A femtosecond laser (Visumax, Carl Zeiss
Meditec AG)was used to perform an 8.0mmdiameter lamel-
lar cut at an intended depth of 220 mm from the anterior sur-
face; the cut had a superior hinge. The flap was then excised
and the corneoscleral button dissected and fixed in 10%
formaldehyde.

For microkeratome lamellar cuts, the corneoscleral but-
tons were dissected and mounted on an artificial chamber
(ALTK/DSAEK CBm microkeratome system, Moria). A
300 mm footplate was used to cut a free cap. First-use and
second-use blades were used to obtain a wider range of sur-
face quality. After the cut, corneas were unmounted and
fixed in 10% formaldehyde.

Scanning Electron Microscopy Images

A quarter of each corneoscleral button was processed for
SEM. Tissues were rinsed, dehydrated in ascending concen-
trations of ethanol (25%, 50%, 75%, and 100%), infiltrated
with 3 changes of hexamethyldisilazane, and dried over-
night. Samples were then coated with a 20 nm layer of
gold by vacuum resistive thermal evaporation.

The stromal bed of each specimen was examined using
a scanning electron microscope (Jeol JSM-6300F, Jeol Ltd.)
at 5 kV. Samples were placed on an xyz translation stage,
which allowed tilt with respect to the beam axis. Different re-
gions were visualized on each sample using a !1000 magni-
fication and 15.0 mm working distance. This magnification
was chosen to match that in previous studies in which
SEM images were used to judge corneal surface
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quality.8,12,20,23 All SEM images had a 100 nm/pixel scale
and were saved in an 8-bit format.

Stereoscopic pairs of SEM images were then acquired for
3-D reconstruction of the corneal surfaces. Two images of
the same region captured from 2 opposite angles were ac-
quired by tilting the sample #3 degrees and C3 degrees
with respect to the electron beam axis.

Surface Roughness Grading Based on Human
Perception

A set of 17 SEM images representing a wide range of
corneal-surface-roughness levels were presented to 60
observers who agreed to respond and would provide sta-
tistically significant data. From these answers, the ones
that contained logical mistakes (eg, omission or repeti-
tions) were discarded, yielding 52 responses for the
analysis.

The 17 images were selected from a larger set, regardless
of whether they were obtained from the same samples, and
considering that the goal was to have a large variety in
terms of roughness for testing purposes rather than classi-
fying these particular samples. Micrographs were assem-
bled randomly in a single picture, which allowed an
ensemble view of all samples (Supplement A, available at
http://jcrsjournal.org). The observers were asked to sort
the images according to perceived levels of surface rough-
ness, from the roughest to the smoothest. These observa-
tions were treated as votes. Voters assigned to images
a relative roughness rank, and each image received
52 votes. For each cornea, the average position assigned
by voters was calculated and a consensus ranking was
computed by sorting the mean value of the voted position.
Observers were blinded to the conditions under which the

corneas were processed. Figure 1 shows 6 images represen-
tative of the surface roughness range observed in the
montage.

Numerical Analysis of 2-Dimensional Scanning
Electron Microscopy Images

The quantitative analysis of first-order (single-pixel) and
second-order (pairs of pixels) statistics of pixel intensities
was implemented to classify the SEM images using Matlab
software (Mathworks, Inc.). First-order statistics consisted
of calculating the SD of the gray-level intensites of each
SEM image. For second-order statistics, the method was
based on the calculation of the gray-level co-occurrence ma-
trix (GLCM) proposed by Haralick et al.22 The GLCM de-
scribes intensity spatial distribution of the pixels in an
image and is obtained by calculating how often different
combinations of pixel-pair intensities are found for a given
distance (d) and direction between pixels. To build the
GLCM, all possible pixel-pair intensity combinations (i, j)
distant by d in the image are considered. The total number
of these combinations is determined by the number of gray
levels of the image, and the total number of pixel pairs sep-
arated by d (called further GLCM distance) in a set direction
are counted for each (i, j). Each particular direction and dis-
tance d determines a unique GLCM, which is typically nor-
malized to express probability.

Among the 14 parameters initially proposed by Haralick
et al.,22 contrast was chosen and analyzed as a descriptor
of roughness in this study as follows:

ContrastZ
XN#1

i;j

ði# jÞ2 pði; jÞ

Figure 1.Corneal dissection images. Six of the 17 SEM images provided to the 52 independent observers for assessing corneal surface roughness.
These representative images illustrate the range of surface roughness present in the montage of 17. Shown are 2 rough samples (left column), 2
intermediate samples (middle column), and 2 smooth samples (right column). The differences in image background are due to differences in me-
tallic coatings and variation in the electron-gun intensity between batches, despite constant contrast and brightness settings of the microscope.
Nevertheless, these background variations did not affect the image statistics used in this study or the 3-D reconstruction.
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where p(i, j) is the GLCM component for intensity pair (i, j).
Images were converted to 128 intensity levels and for each
distance, ranging from 1 to 800 pixels (0.1 to 80 mm), the con-
trast values obtained for 0 degrees, 45 degrees, 90 degrees,
and 135 degrees were averaged.

First, the SD of the gray levels for each of the 17 SEM
images as well as the Haralick texture contrast were calcu-
lated. The GLCMs were computed for each image, and the
contrast was plotted as a function of the GLCM distance.
Second, whether human perception of roughness was
correlated with first-order and second-order statistics was
tested.

SurfaceRoughnessGradingBased on 3-Dimensional
Reconstructions

Three-dimensional reconstructions were performed for
the 17 samples. A custom algorithm developed using Math-
ematica (Wolfram Research, Inc.) was used to calculate the
3-D height map of each surface using stereo pairs of SEM
images.24 This was an extension of a previous work25 in
which the strict constraints on sample positioning (manual
alignment of the eucentric points, tilt axis, and precise
knowledge of tilt angles and working distance) were allevi-
ated by automatically finding an average depth plane
through the sample.

For that purpose, a set of similar points was automatically
identified in the stereo images and the coordinates of these
matching points were extracted. These correspondences
yielded a linear transformation T, which modeled geometri-
cally the tilt movement of the microscope stage. By register-
ing the stereo images with the transformation T, a reference
plane for the subsequent measurement of heights was
obtained.

When comparing the registered stereo images, because
the original sample was not planar, any depth deviation
(from the reference plane) showed up as a residual dis-
placement (or disparity) of any corresponding pair of
pixels. To ease computation, the images were also rotated
to make these displacements horizontal to establish
a dense stereo matching step with an appropriate algo-
rithm.26 The resulting horizontal disparity map (i.e., the
differences between the horizontal coordinates of the
matching points in the stereo images) was finally con-
verted into heights according to the acquisition parame-
ters of tilt angle, magnification, and working distance.
Missing or hidden pixels were estimated by interpolation.
A full elevation map was computed for all samples. A cal-
ibration test was performed using as reference sample
a holographic replica grating (13.33 mm step and 4.63 mm
height), and the reconstructed surface was compared
with manufacturer specifications. This calibration also
provided precise information about the size of the pixel
in the SEM images.

Statistical Analysis

The Pearson correlation coefficient (r) was calculated to
study the association between roughness values obtained
with the 3 objective methods. The Spearman rank correla-
tion coefficient (r) was used to study the association be-
tween the ranking obtained with the different objective
methods and subjective methods. A P value less than 0.05
was considered statistically significant. The analyses were

performed using SPSS software (version 19, SPSS, Inc.)
and Matlab software.

RESULTS

Human Perception of Roughness

The boxplot in Figure 2 shows the distribution of the
observers' votes. The size of the boxes represents the
interquartile range and reflects the dispersion of votes,
which is lower at the extremes of the ranking and
much larger in the intermediate positions, indicating
better agreement between observers at the extremes
of the ranking.

Numerical Analysis of Scanning Electron
Microscopy Images

Table 1 shows the results of the SD and texture con-
trast calculations. A high value of these parameters is
generally associated with a high roughness of the
sample.

These first-order and second-order statistics param-
eters were highly correlated (r Z 0.971, P!.0001)
(Figure 3, A), and this high correlation held for
a wide range of GLCM distances (data not shown).

Strong correlations were observed between the sub-
jective consensus ranking and the gray-level intensi-
ties SD (r Z #0.753, PZ.0005) and texture contrast
(r Z #0.775, P!.0005) (Figure 3, B).

Figure 2. Human perception of surface roughness of corneal sur-
faces. All SEM images were obtained with identical microscope set-
tings. Dispersion of the subjective ranking. Each of the 52 observers
ranked all 17 images, from the roughest to the smoothest. The central
mark of the boxes identifies themedian. The length of the boxes is the
interquartile range (IQR). Values more than 3 IQRs from the end of
a box are labeled as outliers (C). The consensus ranking represents
the mean of all 52 votes positions by the observers to each of the 17
images sorted in ascending order. Very rough images (bottom of the
ranking) and very smooth images (top of the ranking) showed a low
dispersion of votes, while images with intermediate roughness
showed significant variations.
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The roughness ranking depended weakly on the
GLCM distance, except for the lowest and highest
values considered (Figure 3, C). Figure 3, D, shows
a histogram of the changes in the roughness ranking
as a function of GLCM distance; that is, the number
of order variations among the 17 samples. Images re-
mained stably sorted for GLCM distances between
10 pixels and 700 pixels. Consistently, Figure 3, E,
shows that the Pearson correlation coefficient re-
mained relatively constant (better than 0.75) for
GLCM distances beyond 100 pixels up to approxi-
mately 700 pixels.

Surface Roughness Based on 3-Dimension
Reconstructions

An SEM image (Figure 4, A) and its corresponding
elevation color map overlaid on the original SEM im-
age (Figure 4, B) are shown as an example of the 3-D
reconstructions of the 17 samples. A 3-D rendering of
the surface is shown in Figure 4, C, from which it be-
comes evident that this corneal sample presented
large-scale height variations that could not be appreci-
ated using a single SEM image. To quantify sample
roughness, the SD of the height was extracted from
the elevation map and used as a roughness coefficient;
however, a lack of correlation between the roughness
coefficient and the textural analysis was observed.
The correlation between this roughness coefficient
and the mean votes was not statistically significant
(r Z #0.436; PZ.079). It was not correlated with the
gray-level SD (rZ 0.336, PZ.187) or with texture con-
trast (r Z 0.250, PZ.332).

DISCUSSION

To our knowledge, we present the first systematic as-
sessment of the tools available to measure the quality
of a corneal surface using SEM samples. We discuss
subjective andmathematic classifications of roughness
based on SEM images and compare them with rough-
ness coefficients obtained from 3-D reconstructions of
such surfaces.

Texture of an image is a relatively complex concept.
In the case of interest here, texture is related to the gray
level properties of pixels and their spatial fluctuations.
When these fluctuations show an order, texture can be
used for classification. It has been shown that human
perception can easily discriminate textures that differ
in their second statistics, while more cognitive effort
is required to distinguish textures when second-
order statistics are similar.27

A wide range of approaches has been used to char-
acterize texture during the past 4 decades.22,28,29 The
method developed by Haralick et al. in 1973,22 based
on the computation of GLCM, has become to a large
degree the standard approach to texture analysis and
is used to study the statistics of pixel intensity distribu-
tion. Pairs of pixels are considered because single-pixel
statistics do not provide enough information on tex-
tures for most practical applications. (Single-pixel sta-
tistics cannot distinguish between checkerboards with
different number of squares, while second-order statis-
tics can.) The GLCM computes the frequency at which
2 distant pixels have intensities i, j (see Materials and
Methods). This way of storing gray-level changes is
the basis of a variety of parameters designed to

Table 1. All parameters calculated for the 17 samples presented to the observers. The position of a sample in themontage image is numbered
as a matrix (row_column), as shown in Supplement A (available at: http://jcrsjournal.org).

Position Mean Vote 3-D Roughness Coefficient (AU) Texture Contrast Image Intensity Standard Deviation

1_1 1.83 8942 228.03 21.26
1_3 3.60 3476 227.64 21.31
1_4 4.96 8131 100.33 14.47
1_2 5.90 9446 189.51 19.75
2_2 6.17 9184 109.72 16.18
4_1 7.12 5861 141.58 16.77
1_5 7.67 12 359 75.80 12.61
4_2 8.33 8039 98.90 13.94
3_5 8.60 9833 162.53 19.03
2_3 9.27 10 063 71.39 12.75
2_1 10.21 4514 78.08 13.69
3_1 11.00 4052 46.73 10.45
3_4 12.21 13 047 106.65 16.04
3_3 12.69 3155 54.53 12.23
3_2 13.38 2406 123.19 16.46
2_4 14.54 1565 41.99 9.58

AU Z arbitrary units; 3-D Z 3 dimensional
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Figure 3. Quantitative analysis of SEM corneal surface images
based on first-order and second-order statistics of pixel intensities.
A: Gray-level SD (first-order statistics) as a function of texture con-
trast for a GLCM distance of 10 mm (r Z 0.971, PZ.0001; n Z 17).
B: Texture contrast for a GLCM distance of 10 mm as a function of
mean voted position (r Z #0.775, PZ.00005; n Z 17). C: Texture
contrast as a function of GLCM distance for the 17 images ana-
lyzed. Each image is represented by a different color; the values
of texture contrast are plotted versus d, averaged for 0 degrees,
45 degrees, 90 degrees, and 135 degrees. D: Number of changes
in the classification obtained with texture analysis as a function
of GLCMdistance. The result show the robustness of this classifica-
tion system; for GLCMdistances varying from50 to 400 mm, 4 times
2 images switched their order in the ranking. E: Correlation coeffi-
cient yielded after the linear fit between texture contrast and the
mean consensus ranking as a function of GLCM distance. The
value remains better than 0.75 despite variations in GLCMdistance
ranging from 50 pixels to more than 650 pixels (5 mm to more than
65 mm) (GLCM Z gray-level co-occurrence matrix).
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describe texture and develop image segmentation al-
gorithms. Haralick et al.22 introduced 14 parameters
based on the co-occurrence matrix used to classify tex-
tures in terms of uniformity, homogeneity, contrast,
gray-level dependencies, and complexity of the image.
Parameters such as energy, entropy, correlation, ho-
mogeneity, contrast, and variance have been used in
biomedical sciences to show the signatures of different
physiological and pathological states,30,31 to classify
protein,32 to characterize aging in microorganisms,33

and to perform automatic image classification based
on neural networks for several other specific applica-
tions.34,35 Texture contrast used as a parameter in the
present study is considered one of the most relevant36

of Haralick et al.'s parameters22 and it is also one of the
most commonly used.

As opposed to second-order statistics on pixel inten-
sity, first-order statistics do not take into account the
spatial distribution of intensities. Nevertheless, the
SD of the gray-level intensities of our SEM corneal im-
ages still showed a good correlation with the mean
voted position, although the correlation was some-
what lower than that for texture contrast. Texture
contrast is a measure of intensity fluctuations over
a certain GLCM distance; a rough surface shows
a higher texture contrast than a smooth surface. Fur-
thermore, the texture contrast seems to reproduce bet-
ter human perception when the GLCM distance is
greater than a few pixels, because at small scale, noise
dominates spatial fluctuations. The gray-level varia-
tions over a scale of more than a few micrometers
are expected to better reflect the clinically relevant
characteristics of the tissue related to the dissection
method, such as collagen lamellae disruption and tis-
sue bridges.

As seen in Figure 2,C, the 17 curves representing the
texture contrast of our images were well separated,
which means that texture analysis distinguished
roughness in ranges in which a group of independent
observers could not. One can see that all the curves
were relatively constant provided that the GLCM dis-
tance was greater than a few micrometers. For smaller
distances, the curves intersect due to noise in the im-
ages, an effect that disappear as the distance increases.

The high correlation between the texture analyses
and human observation indicates that a computer-
based calculation of gray-scale SD or texture contrast
can replace the current subjective evaluation of
roughness (as performed in the field of corneal lamel-
lar surgery assessment). As noted above, very smooth
and very rough surfaces were classified as such by
a majority of the observers; however, substantial
variations were obtained for samples with intermedi-
ate roughness. This study confirms the difficulty of
precisely classifying images of similar roughness
and illustrates the need for an objective method able
to discriminate between comparable levels of rough-
ness. Numerical analysis simplifies and accelerates
classification of the SEM images; it provides objectiv-
ity and repeatability without intraobserver or interob-
server variability.

Alternative approaches for measuring the surface
height still do not perform well enough to become
standards for stromal-bed-roughness quantification.
Atomic force microscopy (AFM) has been used to

Figure 4. Representative example of SEM image 3-D reconstruction.
A: One of the 2 stereo images required for the reconstruction. B:
Color map obtained after the 3-D reconstruction overlying the orig-
inal 2-D image. C: The 3-D rendering of the surface obtained after
reconstruction.
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probe elevations in corneal surfaces with nanometer
accuracy.37–40 This technology does not require sample
preparation; however, the tradeoff for high-accuracy
measurements of elevation is the lower field of view
obtained using this imaging modality. Areas of ap-
proximately 100 mm2 ! 100 mm2 can be scanned, pro-
vided the elevations on the surface do not surpass
5 mm. These parameters make AFM a useful tool to
probe local roughness with very high accuracy in
relatively flat regions; however, AFM remains inade-
quate for global estimations of the quality of stromal
surfaces generally featuring awide range of elevations.
Conversely, optical coherence tomography (OCT) can
image large corneal surfaces, but with insufficient res-
olution. Research-laboratory OCT configurations can
determine the height of a surface with submicrometric
resolution in the axial direction41,42; however, the reso-
lution in the perpendicular direction is usually limited
to several micrometers.43,44 Fine details that are impor-
tant for assessing surface quality, such as stromal fibrils
andtissuebridges,whichare typicallysmaller than10mm,
cannot be resolved with this technique.

When an SEM image is acquired, the atoms of the
sample surface interact with the high-energy electrons
of a scanning beam. Low-energy secondary electrons
resulting from inelastic scattering are collected by a de-
tector, and the signal is displayed as a 2-dimensional
(2-D) intensity distribution map. Usually, the electron
beam enters the sample perpendicular to the sample
holder surface and secondary electrons are collected
by a detector oriented at a certain angle.

Gray levels in SEM images are determined by the
amount of secondary electrons collected by the detec-
tor. The image contrast depends on a series of vari-
ables that are not exclusively related to the
topography of the surface. Although the narrow elec-
tron beam allows a very large depth of focus, varia-
tions in the angle subtended by the sample and the
beam induce changes in the number of secondary elec-
trons collected. Because of this angular dependence of
the signal, small structures and cracks become evident
while small gradients in the height of the sample are
barely visible.

The roughness coefficient in the 3-D images was cal-
culated as the SD of the height extracted from the ele-
vation map; however, poor or no correlations were
found when these coefficients were compared with
texture analysis and human observation. This shows
that the real topography of the surfaces was not the
same as that perceived from standard SEM images.

The 3-D reconstructions did not reproduce the
fine details visible in SEM images. These details
were too small compared to the resolution of the recon-
structions or, in most cases, did not correspond to sig-
nificant changes in height. The stereo reconstruction

algorithms require that when observed from 2 differ-
ent angles, the features in the sample become dis-
placed and the magnitude of this displacement is
used to assign a surface elevation. Hence, a large frac-
tion of the details that can be visually noted in 2-D
SEM images correspond to changes in height too shal-
low to be detected by the 3-D reconstruction at this
magnification.

There are 2main types of errors in the reconstruction
of 3-D height maps. One is local and induced by point
matching errors during the dense stereo-matching
step. These errors showup as noise added to the height
maps that could be reduced by low-pass filtering or by
tuning the stereo-matching parameters (eg, cost func-
tion of the Hirschmuller algorithm26). The second
type is global and induced by errors in tilting of the
specimen. The deviation between the actual tilting
and the intended tilting results in a scaling of the
height map that is proportional to the angular differ-
ence; thus, the 3-D relief is fully preserved. Any other
misplacement of the specimen (eg, alignment of the
eucentric points) does not affect the height map be-
cause transformation T will account for them.

On the other hand, standard SEM images did not
discriminate the wide change in height documented
by the 3-D reconstructions. This is explained by the
fact that the long working distance of SEM is such
that large changes in surface elevation (tens of mi-
crometers) still appear in focus. Although these large
fluctuations in elevation are strikingly revealed in
3-D reconstructions, in the 2-D images they appear
to be masked by small fractures and gaps. Thus,
the lack of correlation between roughness coeffi-
cients computed from 3-D reconstructions with alter-
native methods is not surprising. These coefficients
are dominated by large changes in elevation that
cannot be detected in 2-D SEM as major gray-level
changes.

Stereo-imaging and 3-D reconstruction procedures
are more time consuming than standard 2-D SEM,
both at the experimental and processing levels. Also,
open-source robust algorithms for 3-D reconstructions
are not user friendly for standard vision science re-
search groups. Our software is open source and avail-
able on request.

Elevations on the order of tens of micrometers may
arise from the shrinkage and other modifications that
occur during the sample processing for SEM and
might complicate the assessment of the quality
obtained by the laser or the microkeratome. This dis-
advantage of using SEM images can sometimes be
overlooked, and other techniques such as environmen-
tal SEM or AFM, in which no preimaging sample pro-
cessing is required, could be envisaged for more
precise quantitative description of the surface quality.
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That gray levels in 2-D images correspond to the
slope rather than the height of the sample surface
has an impact on the interpretation of SEM images,
and our study sheds light on this issue. The simple ob-
servation of corneal-surface SEM images does not cor-
relate with roughness following a classic definition;
that is, in terms of the SD of the surface elevation. Nev-
ertheless, corneal surgeons typically assess the spatial
distribution of these irregularities on the surface,
which we show can be quantified by simple texture
analysis algorithms and have clinically been shown
to correlate with vision outcome.

In summary, we have shown that an automated
computation can provide the results that can be ob-
tained by asking independent observers to assess the
roughness of corneal surfaces. This computer-based
calculation is objective, quantitative, much faster,
and robust. In addition, we found that some 3-D infor-
mation is lost when single standard SEM images are
considered and that 3-D reconstructions provide com-
plementary surface information. Large fluctuations in
surface height that could be discovered and quantified
using 3-D reconstructions can be of much higher am-
plitude than the ones that can be visually perceived
in standard 2-D images and sometimes dominate the
calculation of the roughness coefficient.

WHAT WAS KNOWN

& The standard method to evaluate the quality of lamellar
dissections is to grade SEM images in term of roughness
by independent observers. There is a lack of quantitative
methods based on the SEM image analysis allowing an
objective roughness assessment.

& Gray levels in SEM images do not reflect the height of the
surface; thus, color fluctuations cannot be correctly inter-
preted by visual inspection only.

WHAT THIS PAPER ADDS

& A new quantitative method to assess stromal surface
roughness based on the analysis of standard SEM images
was developed. The method is fast, automatic, and unbi-
ased, and the results are in agreement with the estima-
tions obtained by visual inspection.

& For the first time, we performed 3-D reconstructions using
pairs of SEM images of such surfaces to obtain height
maps that provide complementary information. We found
that major surface fluctuations are not shown by the stan-
dard 2-D analysis and that both approaches should be
combined for a thorough characterization.
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