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Abstract

We present a new method to find motion planes in energy
based and spatio-temporal derivative optical flow. Because
our method makes few assumptions about the motion model
and the number of motions present in the sampling window,
we are able to recover simple single motion as well as com-
plex distributions involving transparency and occlusions. We
also discuss the effects of spectral overlapping in the case of
energy-based methods and present some results on synthetic
and natural sequences.

1. Introduction
When computing optical flow involving occlusions or trans-
parency, local motion is often ambiguous and needs to be re-
solved in a larger window or globally as an energy minimiza-
tion problem. The method presented in this paper was devel-
oped to preserve information in the form of distributions of
local motions and provides a way to estimate ambiguity. This
information can then be used to resolve the system globally.
The method resolves planes that pass through the origin in a
3D sampled space. Such planes occur naturally in energy and
spatio-temporal derivative methods.

1.1. Energy motion planes
Energy based motion estimation approaches rely on the prin-
ciple that a linear motion of textures will draw oriented lines
in time. These lines, in turn, form planes that intersect at the
origin in the sequence’s spectrum. Energy based motion es-
timation is effective for egomotion [5] but can also be used
for optical flow where Gabor-like filters are used to locally
estimate frequencies [4].

Parametrizing energy motion planes is not trivial. In the
frequency domain, low frequencies are close to the origin,
giving little information about the orientation of the plane
while high frequencies give accurate information but are sen-
sitive to noise. In addition, when motion is high, spectral
overlapping occurs and the signal appear to “wrap around”
(fig.1).

The quality if the motion distribution recovered depends
mainly on the support of the filters used (usually determined
by the window size in the spatial domain) and the response
to the spatial textures, the resolution in time and wether the
assumption that motion is constant over time is true or not.
Taking more samples in time provides higher accuracy (es-
pecially for high motion) but may break the assumption of

Figure 1: Warping artifacts in the frequency domain: when
motion is not exactly one pixel per frame (left: less than one pixel,
right: more than one pixel) warping artifacts begin to appear.

constant motion.

1.2. Spatio-temporal derivative planes
Spatio-temporal derivatives plotted in 3D will also lie on the
same plane if they represent the same motion. This can eas-
ily be seen from the constant brightness constraint which de-
scribes a plane where the normal is the motion in the spatial
domain:

〈vx, vy, vt〉 · ∇I = 0

Each sample draws a line in the derivative space. Two
samples or more are necessary to solve the plane. Assuming
that motion is constant in a small neighborhood, samples may
be taken inside a window. They could also be taken at differ-
ent scales, thus, the spatio-temporal derivative filters would
be “tuned” to different frequencies in the image texture.

1.3. Existing work
Traditional implementations make assumptions about the
number or type of motions present in the sampling window.
Heeger [4] assumes a single motion plane that can be solved
analytically using gabor filters. Chenet al. [2] makes no as-
sumption as far as the number of motions is concerned, but
the method is sensitive to noise and under-sampling artifacts.
Mann and Langer [5] support various motion speeds but the
orientation has to be the same for all. Pingault [6] makes
ana priori estimate for the number of motions and uses 3D
gaussians and expectation maximization (EM) to model the
motion planes. Extra planes are then discardeda posteriori
using thresholding. Our method is most similar to Yuet al.
[12] which takes responses of conic filters to map precisely
the planes in a spherical(θ, φ) space. The main advantage
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of our method is that we do not need to find the number of
motions by clustering the non-zero values near theθ axis,
and counting the clusters and model the spherical signal us-
ing EM to recover the orientation of the plane corresponding
to each cluster. Instead, we propose integrate energy along
rings and generate a motion distribution where a simple vot-
ing scheme can then be used to identify the dominant mo-
tions. This removes the need for the iterative EM and, be-
cause we do not make the assumptions that the motion distri-
bution is gaussian, we obtain a distribution that can be more
complex and allows a motion that is not purely translational.

2. Pre-Filtering
In energy based methods, if the filter used does not naturally
have a limited support, the image should be filtered to prevent
discontinuities on the edges. For example, in a windowed
Fourier transform we multiply the signal in our window by
a sine:I ′(x) = I(x) sin ( 2πx

sizex
) + 1. While several authors

use a gaussian filter, we find that it tends to blur the spectrum
(see fig.2). If this step is neglected, the shap borders will
interfere with the motion analysis: they will be considered as
non-moving discontinuities with full range spectrum and will
add an artificial plane att = 0.

0.5 pixel/frame

Non Filtered Linear Filter

Gaussian Filter (σ=0.16) Cosine Filter

Figure 2: Effect of various filters on energy: neglecting spatio-
temporal filtering or using the wrong image filter generates artifacts
in frequency space.

The next step consists in attenuating the low frequencies
using a high-pass filter. This filter will get rid of the DC com-
ponent as well as frequencies that provide little information
about the motion and tend to interfere with the rest of the pro-
cess. A typical standard deviation for this filter is 20% of the
nyquist frequency.

3. Projection
The projection remaps the energy of the sequence onto the
surface of a sphere. This step is similar to [12] except that in-
stead of using conic filters, it simply projects by casting rays
along the normals of the sphere thus integrating the spectrum
F onto the surfaceS:

Nθ,φ = 〈sin θ cos φ, sinφ, cos θ cos φ〉

S(N) =
∫

F (rN)dr

WhereF is the 3D Fourier or derivative samples. Only
half the sphere needs to be processed, and rays may be cast
halfway inside since the energy is even-symmetric. All mo-
tion planes pass through the origin, therefore we expect each
plane to appear a line on the surface of the sphere (fig.3).

The projection step is not necessary for the derivative ap-
proach. The spatio-temporal derivatives already describe a
line in 3D that goes through the origin. Therefore, instead of
casting rays, we can project the derivative lines on the surface
of the sphere directly.

Figure 3: Projection of the energy on the surface of a sphere:
the top row shows the sequence of a square that moves to the right
at a speed of〈1, 0〉 along with thelog-energy of its 3D Fourier trans-
form. The black hole in the center is a result of the high pass filter.
Rays are then cast from the center of the cube and projected onto
the surface of a sphere.Bottom left: projection on an actual sphere.
Bottom right: unwrapped(θ, φ) texture map.

4. Integration
The motion distribution is found by integrating rings around
the sphere. We define an axis〈u, v, 1 −

√
u2 + v2〉 on the

surface of the sphere and find a pointp0 perpendicular to this
axis:

p0 = 〈 (
√

u2 + v2 − 1) cos(arctan v
u ),

(
√

u2 + v2 − 1) sin(arctan v
u ),√

u2 + v2〉

We use quaternions to rotatep0 around the axis integrate
S along the ring:

P(u, v) =
∫ 2π

0

S(Rotθ · p0)dθ

Again, in practice, because the signal is even-symmetric,
only one hemisphere needs to be computed and rings can be
limited to180o instead of360o.

The result is a gauss mapP(u, v) that gives the re-
sponse of each motion plane oriented with a normal
〈u, v,

√
1− u2 − v2〉. To enhance this map, its minimum

value is substracted from all other responses. This mini-
mum value corresponds to white noise in the original signal
and low frequencies that contributed to several or all orien-
tations (thus, giving no relevant information about motion).
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The gauss map can be represented as a planar map, as shown
in fig.4.

Figure 4: Integration of rings around the sphere: we define a
normal 〈x, y, z〉 with coordinates〈x, y,

√
1− x2 − y2〉 and inte-

grate the energy on the ring that is perpendicular.Middle: the gauss
map where each point is the responses of a motion plane.Right: the
equivalent planar map where we find the actual coordinates of the
motion: the marked maximum corresponds to the vector〈1.017, 0〉

After normalization, the motion distribution can be used
as a probability distribution. The range of values (max(P)−
min(P)) also provides an indication of the ambiguity of the
motion. Further analysis can be performed from the motion
distribution. The window size could be readjusted from the
motion ambiguity (unless the spatial signal is a superposition
of different signals, a more localized support should result in
less ambiguous motion). Energy minimization could be used
to resolve motion globally from local patches, or additional
parametrization could be applied for specific motion models.
For instance, one can analyze the translation stretch caused
by parallax of a sequence (see fig. 5 c).

5. Spectral Aliasing in Fast and Slow
Motion

With energy based motion analysis, spectral aliasing usually
occurs when the motion speed is higher than one pixel per
frame. Since the filter is periodic, the motion that is seen at
a given frequency of the filter is actually a modulus of that
frequency. In general, we assume that the motion is smaller
than half the wavelength, but this is not always true. Alias-
ing can be temporal or spatial, but as pointed out by Mann
and Langer [5], in natural sequences, spatial aliasing is less
important because of optical blur.

Mann and Langer describes a way to rectify the plane
when there is single motion (or a bow-tie). This rectifica-
tion cannot be used in our method since rectifying for one
motion plane might interfere with another valid plane.

Instead, we choose to wrap the rays that we use when pro-
jecting the energy on the surface of our sphere. This way, the
rays will follow the planes as they wrap and should hold a
greater amount of energy when they reach the surface of the
sphere. In fig.5, we show how this method allows us to detect
motion of 8 pixels using a sampling of31 × 31 × 9 even if
the temporal aliasing is quite important at that speed.

Even without the warping of the rays, experimental results
indicate that spectral overlap has little effect on our method.
Since the wrapped planes are not aligned with the origin, they

become diffused on the surface of the sphere during the pro-
jection step.

6. Conclusions
We presented a simple yet robust method to find multiple mo-
tion planes for energy-based motion estimation. The method
makes no assumption about the number or the type of mo-
tion in the sampled window and is robust to the spatial and
temporal aliasing. We showed that the maximum response
in the motion distribution map corresponds to the plane of
the dominant motion, thereby making the method suitable for
simple motion estimation. In addition, it is possible to per-
form further analysis on the local maxima to learn and take
into account other motions present in the sampling window.
Depending on the resolution of the motion density map, an
implementation of this method takes a fraction of a second
to compute and one could easily imagine further optimiza-
tions where the rings are evaluated from coarse to fine over a
region of interest.
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Figure 5:All results used a31 × 31 × 9 window and an energy approach. The resolution forS(θ, φ) and of the density mapP(u, v)
were64 × 32 and64 × 64 respectively.a: Two images of noise with motion〈1, 0〉 and〈−1, 0〉 added together . The two motions are
recovered (one maximum at〈1.004, 0〉 and another one at〈−0.992, 0〉). b: A black rectangle on a white background moving at〈8, 0〉
pixels per frame. The high motion creates severe aliasing along the temporal axis. Yet, motion is found at〈7.46, 0〉. For such a sequence,
a better approach would be to first subsample the image - reducing the speed and thus the aliasing, but we wanted to show how aliasing
affects our method.c: Motion with parallax. The window chosen contains multiple motions going to the right (the camera translates to
the left and trees of different depth move at different speeds). In the rightmost image, the parallax appears as stretch along the x axis.
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