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Abstract Reconstruction from structured light can be greatly affected by in-
direct illumination such as interreflections between surfaces in the scene and
sub-surface scattering. This paper introduces band-pass white noise patterns
designed specifically to reduce the effects of indirect illumination, and still be
robust to standard challenges in scanning systems such as scene depth discon-
tinuities, defocus and low camera-projector pixel ratio. While this approach
uses unstructured light patterns that increase the number of required projected
images, it is up to our knowledge the first method that is able to recover scene
disparities in the presence of both indirect illumination and scene disconti-
nuities. Furthermore, the method does not require calibration (geometric nor
photometric) or post-processing such as phase unwrapping or interpolation
from sparse correspondences. We show results for a few challenging scenes and
compare them to correspondences obtained with the Phase-shift method and
the recently introduced method by Gupta et al., designed specifically to handle
indirect illumination.

Keywords Active reconstruction · global illumination · indirect illumination ·
depth discontinuities

1 Introduction

Scene reconstruction from structured light is the process of projecting a known
pattern onto a scene, and use a camera to observe the deformation of the
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pattern to calculate surface information. The term “structure” comes from
the fact that a unique code (a finite set of patterns) is associated to each
projector pixel, based on its position in the pattern. Camera-projector pixel
correspondence (see Fig. 1) can then directly be established and triangulated to
estimate scene depths. Results produced by structured light scanning systems
greatly depend on the scene and the patterns used. In particular, it was shown
in [23] that low frequency patterns create interreflections in scene concavities
that cannot be removed. Another issue comes from scene depth discontinuities,
where smoothness of the observed pattern can no longer be assumed.

Fig. 1 Example of a scene (left) with one unstructured band-pass pattern projected on it.
Several of these patterns are used to recover the x (center) and y (right) correspondence
maps between the camera and the projector.

In this paper, we propose the use of band-pass white noise patterns that
are specifically designed to reduce the effects of indirect illumination1 while
still being able to handle depth discontinuities. These patterns follow the basic
idea of unstructured light patterns [20,9,31] that do not directly encode pixel
position in the projector. Their only restriction is that the accumulation of
such patterns uniquely identifies every projector pixels. Therefore, the corre-
spondence of a camera pixel is no longer computed directly from the observed
pattern sequence, and has to be found using an iterative high-dimensional
matching algorithm. The matching method we present here is not limited to
epipolar lines to avoid the need to geometrically calibrate any of the device in
order to recover correspondence.

The spatial frequency of these patterns can be adjusted, making them
robust to defocus (due to small depth of field, for instance) or low camera-
projector pixel ratio2. Also, the method is designed to be independent of pho-
tometric properties (such as gamma correction) of both the projector and the
camera.

The method was first presented in [8] specifically to address the problem
of interreflections. Here, we include new results to show that the method also
works for other types of indirect illumination such as translucency and sub-
surface scattering. We also compare our results with those of other methods,

1 In the literature, indirect illumination is sometimes called global illumination.
2 The camera-projector pixel ratio is defined as one camera pixel over the number of

projector pixels it can see.
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namely Phase-shift and a recently introduced method by Gupta et al. [15,16]
to handle indirect illumination.

The layout of this paper is as follows. We begin in Sec. 2 by briefly re-
viewing prior works related to structured light patterns. We then expose in
Sec. 3 common problems that may arise in structured light setups, namely
indirect illumination, scene depth discontinuities and a low camera-projector
pixel ratio. In Sec. 4, we introduce unstructured band-pass white noise patterns
and discuss their properties. Using these patterns, matching between projec-
tor and camera pixels requires a high-dimensional match algorithm, namely
locally sensitive hashing, which we describe in Sec. 5. In Sec. 6, the Gupta
et al. method that also handles indirect illumination is reviewed. Finally, we
compute in Sec. 7 camera-projector correspondence maps and reconstructions
using our unstructured light patterns and compare results produced by other
methods for different challenging scenes. We conclude in Sec. 8.

2 Previous work

Several sets of structured light patterns were previously proposed to perform
active 3D surface reconstruction. Structured light reconstruction are often clas-
sified based on the type of encoding used in the patterns: temporal, spatial or
direct [28]. Here, we also emphasize the amount of supplemental information
needed by the method to work effectively. For instance, prior photometric or
geometric calibration is often required.

Temporal methods multiplex codes into pattern sequence [25,29,18,14].
For instance, a pixel position is encoded in [22,25] by its binary code, repre-
sentated by a concatenation of binary coded patterns. One variation introduces
Gray code patterns [18] that are designed to minimize the effect of bit errors by
ensuring that neighboring pixels have a code difference of only one bit. Tem-
poral methods require a high number of patterns and the scene must remain
static during the pattern acquisition process. In practice, these methods can
give very good results and do not require any kind of calibration. Due to focus
issues or low pixel ratio, the lowest significant bits often cannot be recovered.
Solutions have been proposed, like in [14] where high frequency patterns are
replaced by a shifted version of a pattern to recover the last significant bits.
This method (and all variants of binary encoding patterns) also suffers from
the significant indirect lighting induced by the lower frequency patterns, as we
will see in the next section.

In contrast, spatial methods use the neighborhood of a pixel to recover its
code [4,30,27] in order to decrease the number of required patterns. For exam-
ple, the patterns can be stripes [4], grids [26] or a more complicated encoding
such as the popular De Bruijn patterns [30]. Except for grids, it is worth men-
tioning that these patterns are one-dimensional, and thus require a geometric
calibration relating the camera and the projector. Some methods even allow
“one-shot” calibration [27] (i.e. only one pattern is used), but they require a
very good photometric calibration. The main drawback of these methods is
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that they assume spatial continuity of the scene, which does not hold at depth
discontinuities. Furthermore, those methods produce sparse results, as the cor-
respondence can be recovered only at stripe transitions of the pattern. In [34],
high quality reconstructions of static scenes are computed using a multi-pass
dynamic programming edge matching algorithm. The pattern is shifted over
time to compensate for the sparseness of De Bruijn patterns. The number
of patterns required is still a lot less than in the case of temporal methods.
However, the method requires both photometric and geometric calibration.

Direct coding methods use the intensity measured by the camera to directly
estimate the corresponding projector pixel. Similarly to temporal methods, no
spatial neighborhood is required to obtain correspondence. Direct methods
need only a few patterns, typically three patterns. Because patterns can be
embedded in a single color image, one image is theoretically sufficient to re-
cover depth. The work of [32] introduced the so-called “three phase-shift”
method which relies on the projection of three dephased sinusoidal patterns.
This method was modified in [35] to project only two sinusoidal patterns and
a neutral image used as a texture. These methods often require the estimation
of the gamma coefficient (for both the projector and the camera) and, because
they are one-dimensional, a geometric calibration as well. More patterns can
also be used to modulate the signal in 2D and reduce the effects of noise and
gamma factors [7]. Furthermore, matching using these patterns is ambiguous
due to their periodic nature. In practice, phase unwrapping is used to over-
come this issue, but high frequency patterns remain ambiguous for scenes with
large depth discontinuities.

We present in Sec. 4 a novel temporal method that use unstructured light
patterns that are not dependent on projector pixel position. Similar work
has been presented in [20] where scanning is performed using a sequence of
photographs or a sequence of random noise patterns for flexibility purposes.
Contrary to [20] however, we designed the unstructured patterns specifically
to minimize the effects of indirect illumination. Another method was recently
introduced in [15] to address the problem of indirect illumination using a
combination of high frequency patterns, band-pass patterns and standard Gray
codes. We will compare this method with our approach in Sec. 6. Our method
will also address typical challenges that may arise in structured light setups.
We review these in the following section.

3 Problems of structured light systems

This section reviews the problems that may arise in typical structured light
setups, such as indirect lighting, varying camera-projector pixel ratios, and
scene depth discontinuities. It also discusses strengths and weaknesses of the
methods reviewed in Sec. 2.
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Fig. 2 A stripe pattern (left) and its inverse (right) are displayed. Measured intensities
at points (A,B,C,D) are (56, 56, 35, 71) and (46, 66, 72, 65) in the left and right images
respectively. Points B and D are incorrectly classified because of interreflection.

3.1 Indirect illumination

When a scene is lit, the radiance measured by the camera has two components,
namely direct illumination due to direct lighting from the projector and indi-
rect illumination caused by light reflected from or scattered by other points in
the scene for instance[23]. It is generally assumed that when projecting a Gray
(or binary) code pattern followed by its inverse, a camera pixel is lighter when
observing a white stripe [28]. This is not always the case however, especially
in the presence of indirect illumination, as illustrated in Figure 2 by points B
and D. This situation severely deteriorates the quality of the recovered codes.

Nayar et al. presented in [23] a method to separate direct and indirect
components of illumination. They showed that indirect illumination becomes
a constant gray intensity when the pattern frequency is high enough, i.e. that
geometry, reflectance map and direct illumination are smooth with respect to
the frequency of the illumination pattern. Separation is done by subtracting
the image of a single high frequency binary pattern and its complement, or by
subtracting the minimum from the maximum intensities measured over a few
patterns.

Structured light methods that use only high frequency patterns could po-
tentially remove the effects of indirect lighting to improve performance. Phase-
shift methods are good examples, but increasing the frequency also increases
signal periodicity, which makes the subsequent phase unwrapping step hard if
not impossible to accomplish. Therefore, lower frequency patterns tend to be
used in practice [28].

For low frequency patterns, it is much harder to remove the effects of
indirect illumination. A few methods were proposed to partially achieve this
by modulating low frequency patterns with high frequency patterns [7,13,15].
Indirect lighting could also be estimated using a light transport matrix [24,
21,12] which relates every pixel of the projector to every pixel of the camera.
However, this matrix is huge and very time consuming to measure and process.
For illustration purposes, we computed this matrix, which was then transposed
and remapped from projector to camera using our matching results. Figure 3
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Fig. 3 Illumination contribution for selected pixels, indicated by red crosshairs. The blue
color is added artificially to provide a scene reference. Top has direct lighting with inter-
reflections. Bottom left feature indirect lighting. Bottom right is a pure shadow.

shows how different regions in the scene contribute to the intensity measured
at selected camera pixels by creating indirect lighting. As in [23], we argue that
if the pattern spatial frequency is high enough, then these contributing areas
always include an equal mixture of black and white, thereby making indirect
lighting near constant.

3.2 Depth discontinuities

Spatial methods such as De Bruijn patterns require a neighborhood around a
pixel to estimate its code. This allows a reduction in the number of patterns,
but creates problems near depth discontinuities where the camera observes
a mixture of at least two projector pattern regions. This makes decoding
unstable. For this reason, spatial methods require a post-processing step to
remove wrong matches near discontinuities, usually a dynamic-programming
minimization to add smoothness constraints on the correspondence map [34].

For temporal and direct methods, which do not require any spatial neigh-
borhood, correspondence errors can occur when two codes at different depths
are both seen by the same camera pixel. This blends two unrelated codes and
affects direct methods such as Phase-shift which rely on the measured intensity
to estimate correspondence.
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Fig. 4 Synthetic patterns are generated in the Fourier domain by randomizing phase within
an octave. Here, two patterns are shown projected on a scene. Spatial frequencies used are
(left) 8 to 16 cycles per frame and (right) 64 to 128 cycles per frame.

3.3 Pixel Ratio

Because of the relative geometry and resolution of the camera and projector,
it is often the case that a single camera pixel captures a linear combination
of two or more adjacent projector pixels. This situation often occurs in multi-
projector setups, where the total resolution of the projectors is far greater than
the camera resolution. This is known as having a low camera-projector pixel
ratio.

The Gray code method degrades gracefully with pixel ratio, as low signifi-
cant bits become too blurred to be recovered and are simply discarded. Other
methods, such as De Bruijn or Phase-shift, are robust to this as long as their
pattern frequencies are low enough.

4 Unstructured light patterns

This section presents our unstructured light method, featuring band-pass white
noise patterns that are designed to be robust to indirect illumination by avoid-
ing large black or white pattern regions.

In this paper, we consider surfaces that are mostly diffuse. If we can make
one full period of our pattern smaller than the diffusion, then the effect of this
diffusion is near constant for any pattern with the same frequency [23].

We limit the amplitude spectrum to a single octave, ranging from frequency
f to 2f , where a frequency refers to the number of cycles per frame. For each
spatial frequency, the amplitude is set to 1 and the phase is randomized,

subject to the conjugacy constraint [5], namely that Î(fx, fy) = Î(−fx,−fy).

The second step is to take the inverse 2D Fourier transform of Î(fx, fy),
yielding a periodic pattern image I(x, y). To avoid periodicity, we generate
a pattern larger than the desired width (say 110% larger) and then cut the
extra borders. The pattern intensities are then rescaled to have values ranging
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Fig. 5 For HD images (1920 × 1080 pixel resolution), the percentage of pixels having unique
codes while increasing the number of patterns. The curves correspond to f ranging from 8
to 128, with steep curves corresponding to patterns of higher frequencies. Curves stop being
drawn if they reached 99%.

(a) (b)

Fig. 6 Hamming distance between a randomly selected pixel and its neighbors with increas-
ing distance, for a code length of 200 patterns. Distances are shown (a) for a few selected
pixels (f = 64) (b) as the average over many selected pixels for different frequencies f rang-
ing from 8 to 128, with steeper curves corresponding to patterns of higher frequencies. Each
curve follows a sharp increase before decreasing to a constant that is half the number of
patterns. Patterns of higher frequencies are not as correlated spatially (steeper increase).

in [0:255]. Each pattern is finally binarized with a threshold at intensity 127
to make pixels either black (≤ 127) or white (> 127).

Hence, the patterns are parametrized by frequency f and limited to a single
octave of variation to control the amount of spatial correlation (see Fig. 4).
More spatial correlation increases code similarity locally, but also increases
the number of required patterns to guaranty code uniqueness. We next discuss
these two aspects.

4.1 Reducing code ambiguity

In this section, we analyze the relationship between frequency f and the num-
ber of patterns required to identify projector pixels uniquely with a code se-
quence of black and white values. Note that the pattern sequence is uncorre-
lated temporally to ensure that all bit in a code are independent.

In Fig. 5, we measure the number of patterns required to disambiguate at
least 99% of all pixels as frequency f is varied. We consider HD projectors
having 1920×1080 pixels. One can see that low frequency noise requires more
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patterns. Moreover, low frequency patterns often cause interreflections when
large white pattern regions are projected in surface concavities and/or highly
reflective materials.

Finally, we observed that this 1% of code duplicates usually correspond to
small groups of neighboring pixels that have yet to be disambiguated. High
frequency patterns, however, tend to quickly produce unique codes locally but
have duplicates elsewhere.

One interesting question is whether 1D patterns could reduce considerably
the number of required patterns. These 1D patterns could be used, for in-
stance, in a calibrated setup for which epipolar geometry is known. Ignoring
the fact that long 1D stripes do create more interreflection, using 1D stripes
does reduce the number of patterns, but not considerably. The reason is that
faraway codes usually get disambiguated after only a few patterns (in 1D or
2D), but local disambiguation takes a lot more patterns. For some fixed fre-
quency, 1D disambiguation is faster than in 2D, but only by a factor or about
60% (data not shown). If two sets of 1D patterns are used (horizontally and
vertically), then more patterns are actually required (2 × 60%) than a single
2D set.

4.2 Keeping neighbors similar

One important property of our patterns is the similarity between neighboring
codes. Fig. 6 presents the hamming code difference with respect to the dis-
tance between two neighboring pixels. Regardless of the frequency used, the
hamming difference increases gradually with distance until it reaches a nega-
tively correlated maximum before decreasing to a constant level. The standard
deviation around this plateau is that of a Binomial distribution and is equal

to about 7.07 bits, that is
√
N
2 for N = 200 bits.

This correlation between neighboring codes makes it easier for mismatch to
happen between neighbors. However, it provides great robustness to pixel ratio
variations, since the averaging of a group of neighboring codes is still highly
correlated to each original blended codes. Also, this provides robustness to
various local imaging problems like out of focus areas because of small depth
of field.

Moreover, the lack of correlation between far pixels helps provide very
high robustness to scene discontinuities. When a camera pixel observes a scene
discontinuity, its intensity is a blend of two uncorrelated codes. Thus, about
50% of the bits are the same in both codes and will be accurately recovered.
The remaining bits belong to either code, thereby ensuring that the matching
code is composed of at least 75% of all bits of these two codes. This makes
them and their neighbors much more likely to match than any other distant
code. In contrast, if the recovered bits of two blended Gray code patterns
are not all from the same code, then the resulting code may be completely
unrelated to the two blended codes.
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5 Establishing pixel correspondence

This section deals with efficiently establishing the correspondence between
camera and projector pixels. We designed our matching method so that it does
not require any form of prior calibration. By not using any epipolar constraint,
matching becomes more difficult but much more flexible. For example, the
camera could be a non single view point fisheye and the projector illumination
could be bouncing off a convex surface. These cases are common in multi-
projection setups and are not easily calibrated [19].

A number of random unstructured light patterns are generated with a
preselected band-pass frequency interval. Those patterns are projected one at
a time while a camera observes the scene. N patterns are projected, captured
by the camera, and then matched.

First, the gray images captured by the camera are converted into binary
images for matching. The conversion is simply obtained by measuring if a pixel
is above or below the average of previous patterns over time. Let Φxy(i) be a
monotonic function modeling photometric distortion3, the average image Īc in
the camera, computed from all the distorted intensities in the camera, remains
a good delimiter because it is well within Φxy(black) and Φxy(white) when, for
a camera pixel, the amount of black and white values is reasonably balanced.
Furthermore, the average works well because band-pass noise patterns should
not produce big changes in indirect lighting.

Thus, as codes from unstructured light patterns no longer have any cor-
relation to projector pixel position, pixel correspondences have to be found
by matching two sets of high dimensional vectors to one another. Using N
patterns, we obtain a N -dimensional binary vector for each pixel of both
the camera and the projector image. For HD images, each set has around
1920× 1080 ≈ 2 million N -dimensional vectors. For the remainder of the sec-
tion, we assume that camera pixels are matched to projector pixels, although
matching can be performed the other way around (or even both ways simul-
taneously), which can be useful, for instance, in multi-projector systems [19]
to remove the need to inverse the correspondence maps.

Efficient matching is achieved using a high-dimensional search method
based on hashing of binary vectors as described in [2,10,3]. Algorithm 1 shows
a pseudo-code of the matching algorithm. All vectors are hashed by selecting
b-bits (hopefully noise free) out of the N code bits. We use a key size b that
should cover at least the number S of pixels in the projector such that ex-
pected number of codes hashed by a single key is around 1. In practice, we use
b = dlogSe. While the codes should ideally match exactly (i.e. have the same
key), there is some level of noise in practice. Thus, the method proceeds in k
iterations, and selects a different set of bits for each iteration.

For a given pixel, the probability P that it is matched correctly after k
iterations, in other words, that its hashing key has no bit error, can be modeled

3 Photometric distortion includes gamma factors, scene albedo and aperture [6].
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as

P = 1− (1− (1− ρ)b)k (1)

where ρ is the probability that one bit is erroneous. The number of iterations
required to get a match within confidence P can be computed as

k =
log (1− P )

log (1− (1− ρ)b)
. (2)

Several factors can increase the ρ value such as very low contrast and
aliasing which becomes worse for higher frequency patterns and lower camera-
projector pixel ratios. Thus, ρ can vary locally in the camera image, as scene
albedo may change contrast for parts of the scene only. The pixel ratio may
also change, in the presence of slanted surfaces for instance. Estimating ρ
would yield an indicator of how many iterations are required, given the desired
probability of a correct match P . However, Sec. 5.1 will introduce heuristics
that improve convergence and thus, make the number of iterations predicted
by ρ very pessimistic. Other termination criteria are discussed in Sec. 5.2.

Fig. 8(a) shows how adding code errors affects the convergence. We gener-
ated N = 200 patterns and applied a noise according to various ρ values. For
instance, the best match should have an average optimal error of 20 bits for
ρ = 0.1. One can see that convergence is still achieved for ρ ≤ 0.1, but that
it becomes much slower for higher ρ values. Since the number of iterations
grows exponentially with ρ, a value larger than about 0.3 will result in no
convergence.

Matching heuristics (see Sec. 5.1) can improve convergence considerably
(see Fig. 8(b)). However, optimal matches do not guaranty quality matches.
For instance, when ρ = 0.3 is used, the distribution of errors for good matches
is not well separated from random codes (ρ = 0.5), distributed around half
the number of bits N

2 . We will discuss these distributions again in Sec. 5.1, in
particular Fig. 9.

During an iteration, the hash table can be unbalanced, i.e. more that one
code hashes in a single bin. The search for the closest code in each bin can
increase significantly the matching time. In practice, the codes hashing to the
same bin could be stored in a data structure accelerating the search. Instead,
we select the first hashed code. Even if this strategy does not choose the best
code, the time gained can be used to perform another matching iteration.
Typically, the execution time for one iteration on a laptop with an Intel dual
core 2.2 Ghz CPU with 2GB of RAM is around one second when matching
an HD camera to an HD projector, and the iteration time is doubled when
applying the heuristics.
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Algorithm 1 Pseudo-code of the basic matching algorithm.

{assuming that the projector resolution is WxH}
k ← ceil(log(W ∗H)) {compute the hashing key size for a hash table of size N}
N ← 200 {number of projected patterns}
for all camera pixels i do

match cost[i]← inf {init match costs to infinity}
end for
{keep matching until some criterias are met (see text)}
repeat

mask← RandomMaskSelect(k,N) {select k bits out of N}
proj hash table.init()
for all projectors codes P [i] do

proj hash← hash(P [i],mask)
proj hash table.add(proj hash, P [i])

end for
for all camera codes C[i] do

cam hash← hash(C[i],mask)
P [j]← proj hash table.query(cam hash) {closest projector code to C[i]}
cost← HammingDistance(P [j], C[i])
if cost < match cost[i] then

match[i]← P [j]
match cost[i]← cost

end if
end for

until some criteria is met

5.1 Matching heuristics

Usually, reconstruction methods take advantage of a priori knowledge about
the scene in order to improve the results. One common assumption is that
neighboring pixels have similar correspondences, thereby suggesting some form
of local smoothing. Unfortunately, smoothing can introduce errors at discon-
tinuities or wherever the assumption does not hold. In our case, we propose
two simple heuristics that take advantage of scene smoothness to get a dra-
matic speedup in convergence. Their great advantage is that they improve the
convergence time without any degradation of the final result.

The heuristics are illustrated in Fig. 7. Forward matching tests if a camera
pixel can find a better match in the neighborhood of its current match in the
projector. This heuristic refines matches that lie within the area of locally
correlated region where cost increases with distance w.r.t. the best match (≤
15 pixels in Fig. 6(a)). Backward matching tests the neighbors of a camera
pixel to check if they could also match its corresponding projector pixel. This
heuristic tends to create new matches, i.e. it improve current matches with
potentially uncorrelated matches (> 15 pixels in Fig. 6(a)). The speedup is
shown in Fig. 8, where the convergence is plotted as a function of the number
of iterations needed with and without the use of the heuristics.
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Fig. 7 When a match is found (black solid line), two simple matching heuristics can be
used : forward matching (blue dashed lines) attempts to improve an existing match and
backward matching (red dot-dashed lines) attempts to create neighborhood matches.

(a) (b)

Fig. 8 For increasing noise levels ρ, convergence of the hashing method (a) without heuris-
tics (b) with heuristics. The dashed lines represent the theoretical lowest average code error.
Convergence is much faster when applying the heuristics.

(a) (b)

Fig. 9 For a typical scene, (a) a histogram of match costs has two distributions centered at
ρN and at a value a bit below N

2
(see text for details). (b) a histogram of standard deviation

of intensities has a high peak corresponding to unlit camera pixels or low contrast regions.
A threshold (indicated here by the red dashed line) cannot completely separate the long
tails of the distributions.

5.2 Match confidence and termination criteria

This section discusses a termination criteria to decide when to stop matching
iterations. This is not a trivial problem due to the probabilistic nature of
the algorithm. For instance, it can often happen that hashing improves a few
matches even after there was no improvement for several iterations.
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Fig. 10 2D log histograms of matching costs and standard deviations of intensity for the 4
scenes presented in the experimental results, namely (left) Ball and (right, top to bottom)
Games, Grapes & Peppers and Corner. The red lines show the thresholds to remove unlit
camera pixels.

Camera pixels that see a surface area not directly illuminated by the pro-
jector should be excluded from the matching process because they produce
random codes that depend on camera noise. The matching process would keep
improving these matches, making a termination criteria more difficult to es-
tablish. Looking at the matching costs or standard deviations of intensity
could be a good strategy to detect most of the unlit camera pixels. Fig.9(a)
shows a histogram of the matching costs for a typical scene after 50 iterations.
The matching costs are distributed in two well separated Binomial-like dis-
tributions, namely one centered at ρN and one centered below N

2 (in Fig.9,
N = 200 and ρ ≈ 0.1). The first distribution corresponds to correctly matched
camera pixels. The second distribution corresponds to unlit pixels; its mean is
lower than N

2 , because only the minimum matching code is kept at each itera-
tion. Fig.9(b) shows a histogram of the standard deviations of pixel intensities.
The distribution is roughly bimodal, with the highest peak corresponding to
mostly unlit pixels. This narrow peak illustrates well the fact that all the pat-
terns produce near constant indirect illumination for a given scene. Gray codes
do not feature this property. The rest of the distribution is composed of lit
pixels, modulated by the scene reflectance.

However, this peak also contains pixels corresponding to dark scene objects.
Because of this ambiguity, we consider both criteria, as illustrated in Fig.
10. Because of the long tails of the distributions, there is usually no single
threshold which can separate all good matches from wrong matches. For most
scenes, either criteria works. For scenes with dark objects, saturated or noisy
imaging conditions, one criteria might work better than the other. The red
lines illustrates the thresholds we used for the different scenes. In practice,
both criteria could be used at the same time.
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Fig. 11 Correspondence from unstructured patterns at frequencies 8 (left), 32 (middle) and
128 (right). The effects of using higher frequency patterns are exposed on the edge of the
ball and its shadow.

Fig. 12 Correspondence from unstructured patterns at frequencies 8 (left), 32 (middle) and
128 (right). The effects of using higher frequency patterns are exposed at the corner of the
wall and the ground.

Once the unlit camera pixels are discarded, we can iterate until only a
small number of pixels are updated (say 5 pixels) for a few iterations (say 5
iterations). Very few match errors may remain, usually less than 0.01% of all
pixels (20 or 30 pixels). These are typically located where strong interreflection
remains, such as the intersection of two walls. There, the high code errors
makes the heuristics inefficient. An exhaustive search is then performed for all
matches that are not smooth with respect to their neighbors, in the hope of
finding a better match. Smoothness for a camera pixel is simply checked by
considering the average match of its neighbors, and verifying that it is within
a threshold distance τ (we use τ=1.5). Note that this smoothness condition
will also select all depth discontinuities as potential match errors, thereby
subjecting them to an exhaustive search. This search is repeated until no
further updates are made.

5.3 First results

In this section, we present the first results of our method on a real scene
composed of two walls, a floor and a ball (see Fig. 1). The scene contains
significant interreflections, depth discontinuities and out of focus regions. A
more detailed comparison with other methods will be presented in Sec. 7.
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Fig. 13 Average correspondence cost as a function of pattern frequency (4,8,...,256), for
various code lengths (40,120 and 200 bits). Observe that more bits give lower errors. Low
frequency patterns give slightly larger average errors because they required even more than
200 bits to disambiguate all pixels locally. High frequency patterns suffer from aliasing which
makes convergence harder to achieve.

Our method gives x and y correspondence maps, as illustrated in Fig. 1.
A frequency f of 128 cycles per image was used. Furthermore, we tested our
method over a range of unstructured pattern frequencies. The x correspon-
dences for selected regions are shown in Figs. 11 and 12. Notice that for regions
not lighted directly, random codes are expected. This is observed behind the
ball (Fig. 11 (right)). High-frequency patterns also improve matching on the
floor near the wall.

Finally, using the best results of our method as a reference, we measured
errors by varying pattern frequencies and the number of patterns used. Fig. 13
shows that errors are smaller with more patterns and middle frequencies. Low
frequencies are unsuitable to reduce the effects of indirect lighting, and more
patterns are required to disambiguate codes locally. The fact that middle fre-
quency patterns (here 32 and 64 cycles per frame) perform better than very
high frequency patterns shows a tradeoff in the choice of frequency. While very
high frequencies (here 256 cycles per frame) would be ideal to make indirect
illumination near constant, they suffer from the problem of camera aliasing,
i.e. the camera resolution needs to be is sufficiently high to resolve the signal.
They are also more prone to loss of SNR due to local blurring effects such as
sub-surface scattering and defocus.

6 Comparison with the Gupta et al. method

This section compares our method to the method recently introduced in Gupta
et al. [15] to address indirect illumination. Their method uses four set of codes,
standard Gray codes and three other sets optimized for different illumination
effects.

First, they address what they classify as long-range illumination (diffuse
and specular interreflections) with the use of high-frequency patterns, gener-
ated by combining a chosen high-frequency base pattern with standard Gray
codes through the XOR operation. From the captured images, the original
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Gray code patterns can be recovered by performing the XOR operation again
with the same chosen pattern. Although this pattern could be any high-
frequency pattern, Gupta et al. use the two highest Gray code patterns to
generate two sets of patterns, namely XOR-2 and XOR-4 patterns (2 and 4
correspond to the maximum stripe width in both sets). Note that this choice
produces narrow but very long stripes, which is not the case in our patterns.
Effects of indirect illumination could probably be reduced further by choosing
a base pattern that limits the stripes in both directions.

Second, they address short-range effects (sub-surface scattering and defo-
cus) that can severely blur the high-frequency patterns, leading to a lot of code
errors during the binarization process. To avoid this, Gupta et al. use a set
of patterns called min-SW Gray codes [11], featuring stripe widths between 8
and 32 respectively.

Note that the XOR-2 and XOR-4 patterns do not maintain the basic Gray
code property, namely that a code and any one of its neighbors differ only
by one bit. This property ensures that if a camera pixel observes a mixture
of two neighboring codes, then the dominant code is chosen from the one
black/white transition (i.e. one bit difference). But if more than one transition
exists between two codes, then there is no guarantee that all dominant bits
come from the same code, and the resulting code may then correspond to an
unrelated far away pixel position. This is especially true in the presence of
interreflections. In contrast, our method ensures local coherence.

In [15], good correspondences are chosen if they match in at least two sets of
codes. Otherwise, a camera pixel is flagged as an error. In our implementation
of the method, we matched codes in x and y separately and we considered that
two matches agreed if their pixel distance was less or equal to 2. As in [16],
we applied a 3 × 3 median filtering on each of the 4 correspondence maps to
remove noisy matches due to pixel aliasing. Note that we did not address in this
paper the iterative error correction process[33,15] which captures additional
patterns that include only unmatched projector pixels. While this process
can be effective to decrease indirect illumination given a good error detection
criteria, we argue that it should ideally not be required for robust patterns.

7 Experiments

In order to test the performance of our proposed method, we scanned sev-
eral challenging scenes using a Gige Prosilica 1360 camera and a Samsung
P400 projector. The pixel resolution of the camera and the projector were
1360×1024 and 800×600 respectively. We tested four scenes that exhibit dif-
ferent challenges: Ball, Games, Grapes & Peppers and Corner (see Fig. 14).
We compared correspondence results from our method based on unstructured
light (42 patterns), the Gupta et al. method using all 4 sets of patterns (42
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(a) (b)

(c) (d)

Fig. 14 The four scenes that we tested, namely (a) Ball, (b) Games, (c) Grapes & Peppers

and (d) Corner.

patterns4), the Gupta method using XOR-4 patterns only (12 patterns) and
Phase-shift (3 patterns). More results are available online at [1], including re-
sults produced by Gray codes and by using more unstructured light patterns.

We generated the unstructured patterns using f = 64, i.e. with frequencies
ranging from 64 to 128 cycles per frame horizontally. We chose this range as
it is about 4 times below the Nyquist frequency limit of 400 cycles per frame
in both the camera and the projector (the camera-projector pixel ratio is
approximatively 1 for our setup). This adds robustness to out of focus regions
and in the presence of subsurface scattering. Note that the curvy stripes of
the patterns are thus about 4 pixels wide. This is similar to the XOR-4 codes,
although the latter also contain stripes as narrow as 2 pixels which are not as
robust.

Using these frequencies, the number of patterns required so that each pro-
jector pixel has a unique code5 is about 80. However, we used only 42 patterns
for a fairer comparison with the Gupta et al. method. These still produce
more than 99.9% projector pixels with unique code, but the lower number of

4 For a 800 × 600 projector resolution, the Gupta et al. method requires 10 patterns for
each set of codes, plus an all white and an all black pattern to get a good estimate of the
mean gray intensity for decoding purposes [16].

5 Generating 1D unstructured light patterns reduces the number of required patterns, but
the longer vertical strips create more indirect illumination than 2D patterns.
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(a) (b)

(c) (d)

Fig. 15 Triangulation from the correspondences given by our method for (a) the Ball scene,
(b) the Games scene, (c) the Grapes & Peppers scene and (d) the Corner scene.

patterns makes outlier matches more likely and so we apply a 3 × 3 median
filter on the resulting matches. Note that our method finds x and y correspon-
dence maps but that we only display the former for comparison with the other
methods.

For each match result, we also computed the pixel difference with an un-
filtered reference match given by our method using 200 patterns. For visu-
alization purposes, the differences were scaled by 64, i.e. a 1-pixel difference
has 64 pixel intensity, a 2-pixel difference has a 128 pixel difference, etc. The
quality of the reference match can be seen by looking at the corresponding
scene reconstructions by triangulation shown in Fig. 15.

Ball
The Ball scene is similar to the scene used in Sec. 5.3. It is composed of two
walls, a floor and a ball that creates a highlight and a depth discontinuity at
its boundary. Results of all tested methods are shown in Fig. 16. Our method
(top row) gives good results with errors at the depth discontinuity and at
the intersection of the wall and the ground. Using more patterns increases
robustness at these locations (see online results [1]). The Gupta et al. method
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(2nd row) also performs well, but the voting scheme fails on the ground near the
wall where interreflections are higher. Using only XOR-4 patterns (3rd row)
performs better there, but performs worse on the out of focus foreground.
Phase-shift (last row) gives good results but with errors near the ground/wall
intersection6.

In order to verify that all methods perform similarly when unaffected by in-
direct illumination, we selected a region where indirect illumination is neglige-
able, namely the upper left region of the left wall, and compared the matches
of all methods. At least 80% of the matches were exactly the same. All the
remaining matches were within a distance of one pixel.

Games

Fig. 17 shows results for the Games scene, which exhibit a lot of sharp dis-
continuities. Also observe the curved surface of the cylindrical box, especially
the soft edges at the sides where surface normals become perpendicular to the
optical axis of the camera. Our method successfully matches all these prob-
lematic areas. However, it has problems on the top of the rectangular box.
Note that while Phase-shift and the Gupta et al. method using only XOR-4
patterns seem to be performing better there, it is in fact light reflected from
the wall that is being matched, thus the large error w.r.t. the reference match.
The Phase-shift result exhibits wavy patterns due to light bouncing off the
cylindrical and rectangular boxes.

Grapes & Peppers

Results for the Grapes & Peppers scene are shown in Fig. 18. Grapes are
translucent fruits that create subsurface scattering, and peppers have very
shiny surfaces. Subsurface scattering is especially challenging to high-frequency
patterns because they become blurry. Our method works well but has larger
errors on the pepper in the middle of the frame. There, the slanted surface
and subsurface scattering make the patterns very blurry and using more pat-
terns would have increased robustness considerably. The standard Gupta et al.
method actually works better here than using only XOR-4 patterns because
the latter are too high frequency. While it is true that one could apply XOR-8
or XOR-16 patterns [16], this underlines that it is not obvious to select the
right set of patterns beforehand. Moreover, a set of patterns might give good
results on some parts of the scene but not another. This was the reason to
use multiple sets of patterns in the Gupta et al. method. Phase-shift produces
good results but wavy artifacts can be seen on the peppers.

Corner

The Corner scene was made using two highly reflective surfaces set at a 90
degree angle. Both our method and the Gupta et al. method using only XOR-4

6 We computed Phase-shift using three 64 cycles per frame patterns and calibrating the
nonlinearities related to gamma coefficients of the camera and the projector. We here ignore
issues related to the ambiguous periodicity of the signal as we are only interested in how
well the phase can be recovered. Thus, we performed phase unwrapping by by looking at
the reference match and finding the most likely period for each pixel independently.
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patterns perform well except very near to the corner. Phase-shift also performs
well but exhibits a periodic error even far away from the corner. The Gupta
et al. method performed poorly for this scene. Notice that we pruned matches
on the black tape holding the reflective material as it has very low reflectance.

8 Conclusion

In this paper, we addressed the problem of indirect illumination in structured
light systems by taking advantage of a new approach to active reconstruction
that uses patterns unrelated to projector pixel position. The only constraint
imposed on these unstructured light patterns is that a sequence of these pat-
terns identifies every projector pixels by a unique code. The proposed band-
pass white noise patterns are designed to reduce the effects of indirect illumi-
nation and be robust to other issues such as low camera-projector pixel ratios.
Because of the high number of patterns, the method is robust to capture errors
and the matching algorithm provides very good performance with respect to
depth discontinuities. Future works could address the problem of estimating
matches at sub-pixel precision, as well as reducing the number of patterns by
increasing the amount of new information given by each pattern, while still
keeping their basic properties. It would also be interesting to investigate if the
method could be used when multiple light sources are used [13] or when the
projector is moving [17].
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Our method using 42 patterns

Gupta et al. method using 42 patterns

Gupta et al. method (XOR-4 only) using 12 patterns

Phase-shift using 3 patterns

Fig. 16 Results for the Ball scene. The left column show the x correspondence map given by
the tested methods. The right column shows the pixel difference w.r.t. the correspondences
given by our method using 200 patterns.
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Our method using 42 patterns

Gupta et al. method using 42 patterns

Gupta et al. method (XOR-4 only) using 12 patterns

Phase-shift using 3 patterns

Fig. 17 Results for the Games scene. The left column show the x correspondence map given
by the tested methods. The right column shows the pixel difference w.r.t. the correspon-
dences given by our method using 200 patterns.
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Our method using 42 patterns

Gupta et al. method using 42 patterns

Gupta et al. method (XOR-4 only) using 12 patterns

Phase-shift using 3 patterns

Fig. 18 Results for the Grapes & Peppers scene. The left column show the x correspondence
map given by the tested methods. The right column shows the pixel difference w.r.t. the
correspondences given by our method using 200 patterns.



Robust Unstructured Light Scanning 25

Our method using 42 patterns

Gupta et al. method using 42 patterns

Gupta et al. method (XOR-4 only) using 12 patterns

Phase-shift using 3 patterns

Fig. 19 Results for the Corner scene. The left column show the x correspondence map
given by the tested methods. The right column shows the pixel difference w.r.t. the corre-
spondences given by our method using 200 patterns.
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