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Abstract

Reconstruction from structured light can be greatly af-
fected by interreflections between surfaces in the scene.
This paper introduces band-pass white noise patterns de-
signed specifically to reduce interreflections, and still be
robust to standard challenges in scanning systems such
as scene depth discontinuities, defocus and low camera-
projector pixel ratio. While this approach uses unstructured
light patterns that increase the number of required projected
images, it is up to our knowledge the first method that is
able to recover scene disparities in the presence of both
scene discontinuities and interreflections. Furthermore, the
method does not require calibration (geometric nor photo-
metric) or post-processing such as dynamic programming
or phase unwrapping. We show results for a challenging
scene and compare them to correspondences obtained with
the well-known Gray code and Phase-shift methods.

1. Introduction
Scene reconstruction from structured light is the process

of projecting a known pattern onto a scene, and use a cam-
era to observe the deformation of the pattern to calculate
surface information. The term “structure” comes from the
fact that a unique code (a finite set of patterns) is associated
to each projector pixel, based on its position in the pattern.
Camera-projector pixel correspondence can then directly be
established and triangulated to estimate scene depths.

Results produced by structured light scanning systems
greatly depend on the scene and the patterns used. In par-
ticular, it was shown in [14] that low frequency patterns
create interreflections in scene concavities that cannot be
removed. Another issue comes from scene depth discon-
tinuities where smoothness of the observed pattern can no
longer be assumed.

In this paper, we propose the use of band-pass white
noise patterns that are specifically designed to reduce indi-
rect lighting while still being able to handle depth disconti-
nuities. These patterns follow the basic idea of unstructured
light patterns [12, 7, 22] that are not based on pixel position

Figure 1. Example of a scene (left) and its correspondence map
(right) with red and green are used for x and y coordinates respec-
tively.

in the projector. Their only restriction is that the accumu-
lation of such patterns uniquely identifies every projector
pixels. Therefore, the correspondence of a camera pixel is
no longer directly given by the observed pattern sequence,
and has to be found using a high-dimensional search algo-
rithm. The search method we present here is not limited to
epipolar lines to avoid the need to geometrically calibrate
any of the device to recover correspondence.

The spatial frequency of these patterns can be adjusted,
making them robust to defocus (due to small depth of field,
for instance) or small camera-projector pixel ratio1. Also,
the method is designed to be independent of photometric
properties of both the projector and the camera.

The layout of this paper is as follows. We begin in Sec. 2
by briefly reviewing prior works related to structured light
patterns. We then expose in Sec. 3 common problems that
may arise in structured light setups, namely indirect light-
ing, scene depth discontinuities and a low camera-projector
pixel ratio. In Sec. 4, we introduce unstructured band-pass
white noise patterns and discuss their properties. Using
these patterns, matching between projector and camera pix-
els requires a high-dimensional search algorithm, namely
locally sensitive hashing, which we describe in Sec. 5. Fi-
nally, we compute in Sec. 6 a camera-projector correspon-
dence map using our unstructured light patterns and com-
pare results produced by the standard Gray code and Phase-
shift methods. We conclude in Sec. 7.

1 The camera-projector pixel ratio is defined as one camera pixel over
the number of projector pixels it can see.
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2. Previous work
Several sets of structured light patterns were previ-

ously proposed to perform active 3D surface reconstruction.
Structured light reconstruction are often classified based on
the type of encoding used in the patterns: temporal, spatial
or direct [19]. Here, we also emphasize the amount of sup-
plemental information needed by the method to effectively
work. For instance, prior photometric or geometric calibra-
tion is often required.

Temporal methods multiplex codes into pattern sequence
[16, 20, 11, 10]. For instance, binary coded patterns intro-
duced in [16] represent, after concatenation, a unique bit
code for each pixel. One variation of this is Gray code pat-
terns [11] that are designed to minimize the effect of bit
errors by ensuring that neighboring pixels have a code dif-
ference of only one bit. Temporal methods require a high
number of patterns and the scene must remain static dur-
ing the whole pattern acquisition process. In practice, these
methods can give very good results and do not require any
kind of calibration. Due to focus issues or low pixel ra-
tio, highest bits often cannot be recovered. Solutions have
been proposed, like in [10] where high frequency patterns
are replaced by a shifted version of a pattern to recover the
last significant bits. This method (and all variants of binary
encoding patterns) also suffers from the significant indirect
lighting generated by the lower frequency patterns, as we
will see in the next section.

In contrast, spatial methods use the neighborhood of a
pixel to recover its code [4, 21, 18] in order to decrease
the number of required patterns. For example, the patterns
can be stripes [4], grids [17] or a more complicated encod-
ing such as the popular De Bruijn patterns [21]. Except
for grids, it is worth mentioning that these patterns are one-
dimensional, and thus require a geometric calibration relat-
ing the camera and the projector. Some methods even allow
“one-shot” calibration [18] (i.e. only one pattern is used),
but they require a very good photometric calibration. The
main drawback of these methods is that they assume spa-
tial continuity of the scene, which does not hold at depth
discontinuities. Furthermore, those methods produce very
sparse results, as the correspondence can be recovered only
at stripe transitions of the pattern. In [24], high quality re-
constructions of static scenes are computed using a multi-
pass dynamic programming edge matching algorithm. The
pattern is shifted over time to compensate for the sparseness
of De Bruijn patterns. The number of patterns required is
still a lot less than in the case of temporal methods. How-
ever, the method requires both photometric and geometric
calibration.

Direct coding methods use the measured intensity by the
camera to directly estimate the projector pixel. Similarly
to temporal methods, no spatial neighborhood is required
to obtain correspondence. Direct methods need only a few

Figure 2. Interreflection problem. A stripe pattern (left) and
its inverse (right) are displayed. Measured intensities at points
(A,B,C,D) are (56, 56, 35, 71) and (46, 66, 72, 65) in the left
and right images respectively. Points B and D are incorrectly clas-
sified because of interreflection.

patterns, typically three patterns. Because patterns can be
embedded in a single color image, one image is theoreti-
cally sufficient to recover depth. The work of [23] intro-
duced the so-called “three phase-shift” method which relies
on the projection of three dephased sinusoidal patterns. This
method was modified in [25] to project only two sinusoidal
patterns and a neutral image used as a texture. These meth-
ods often require the estimation of the gamma coefficient
(for both the projector and the camera) and, because they
are one-dimensional, a geometric calibration as well. Fur-
thermore, matching using these patterns is ambiguous due
to their periodic nature. In practice, phase unwrapping is
used to overcome this issue, but high frequency patterns re-
main ambiguous for scenes with large depth discontinuities.

We present in Sec. 4 a novel temporal method that use
unstructured light patterns that are not dependent on pro-
jector pixel position. Similar work has been presented in
[12] where scanning is performed using a sequence of pho-
tographs or a sequence of random noise patterns for flexi-
bility purposes. Contrary to [12] however, we designed un-
structured patterns specifically to minimize indirect illumi-
nation. The method should also be robust to typical chal-
lenges that may arise in structured light setups. We review
these in the following section.

3. Problems of structured light systems
This section reviews the problems that may arise in typ-

ical structured light setups, such as indirect lighting, vary-
ing camera-projector pixel ratios, and scene depth discon-
tinuities. It also discusses strengths and weaknesses of the
methods reviewed in Sec. 2.

3.1. Interreflection

It is generally assumed that when projecting a stripe pat-
tern followed by its inverse, a camera pixel is lighter when
observing a white stripe [19]. This is not always the case
however, as illustrated in Figure 2 by points B and D. This
situation severely deteriorates the quality of the recovered
codes. As noted in [14], interreflections are more trouble-
some for low frequency projected light patterns.

When a scene is lit, the radiance L measured by the



Figure 3. Illumination contribution for selected pixels, indicated
by red crosshairs. The blue color is added artificially to provide a
scene reference. Top has direct lighting with interreflections. Bot-
tom left feature indirect lighting. Bottom right is a pure shadow.

camera has two components, namely direct lighting Ld due
to direct illumination from the projector and Lg caused by
light reflected from other points in the scene [14]:

L = Ld + Lg.

Indirect illumination Lg is often modeled by an integral of
the light contribution of all scene points. In [14], a method
was presented to separate direct and indirect components
of illumination using a few high frequency patterns and
their complement. This separation was possible for high
frequency patterns only because geometry, reflectance map
and direct illumination are assumed smooth with respect to
the frequency of the illumination pattern.

Thus, structured light methods that use only high fre-
quency patterns could potentially remove the effects of in-
direct lighting to improve performance. This would not be
possible for low significant bits patterns of the Gray code
method. For low frequency patterns, indirect lighting must
be estimated using a light transport matrix [15, 13, 9] that
relates every pixel of the projector to every pixel of the cam-
era. This matrix however is very time consuming to capture
and process. For illustration purposes, we computed this
matrix, which was then transposed and remapped from pro-
jector to camera using our matching results. Figure 3 shows
how indirect light contributes to the intensity perceived at
selected camera pixels.

As noted by [14], the Phase-shift method can be used
to estimate indirect light if the patterns have high enough
frequency. In practice however, the increased periodicity
makes the subsequent phase unwrapping step hard if not
impossible to accomplish. Therefore, lower frequency pat-
terns tend to be used [19].

Figure 4. Synthetic noise patterns are generated in the Fourier do-
main by randomizing phase within an octave. Here, two patterns
are shown projected on a scene. Vertical frequencies used are (left)
8 to 16 cycles per frame and (right) 64 to 128 cycles per frame.

3.2. Depth discontinuities

Spatial methods such as De Bruijn patterns require a
neighborhood around a pixel to estimate its code. This al-
lows a reduction in the number of patterns, but creates prob-
lems at depth discontinuities where the camera observes a
mixture of at least two projector pattern regions. This makes
decoding ambiguous. For this reason, spatial methods re-
quire a post-processing step to remove wrong matches near
discontinuities, usually a dynamic-programming minimiza-
tion to add smoothness constraints on the correspondence
map [24].

For temporal and direct methods, which do not require
any spatial neighborhood, correspondence errors can occur
when two codes at different depths are both seen by the
same camera pixel. This blends two unrelated codes and
affects direct methods such as Phase-shift that directly rely
on the measured intensity to estimate correspondence.

3.3. Pixel Ratio

Because of the relative geometry and resolution of the
camera and projector, it is often the case that a single cam-
era pixel captures a linear combination of two or more ad-
jacent projector pixels. This situation often occurs in multi-
projector setups, where the total resolution of the projectors
is far larger than the camera resolution. This is known as
having a low camera-projector pixel ratio.

The Gray code method degrades gracefully with pixel
ratio, as low significant bits become too blurred to be de-
tected and are simply discarded. Other methods, such as
De Bruijn or Phase-shift, are robust to this as long as their
pattern frequencies are low enough.

4. Unstructured light patterns
This section presents our unstructured light method, fea-

turing band-pass white noise patterns that are designed to
be robust to interreflections by avoiding large black or white
pattern regions.

In this paper, we consider surfaces that are mostly dif-
fuse. If we can make one full period of our pattern smaller



than the diffusion, then the effect of this diffusion is near
constant for any pattern with the same frequency [14].

We limit the amplitude spectrum to a single octave, rang-
ing from frequency f to 2f , where a frequency refers to the
number of cycles per frame. For each spatial frequency,
amplitude is set to 1 and phase is randomized, subject
to the conjugacy constraint [5], namely that Î(fx, fy) =

Î(−fx,−fy).
The second step is to take the inverse 2D Fourier trans-

form of Î(fx, fy), giving a periodic pattern image I(x, y).
To avoid periodicity, we generate pattern larger than the de-
sired width (say 110% larger) and cut the extra borders.
The pattern intensities are then rescaled to have values rang-
ing in [0:255]. Each pattern is finally binarized by the use
of a threshold at intensity 127 to make pixels either black
(≤ 127) or white (> 127).

Hence, the patterns are parametrized by frequency f and
limited to a single octave of variation to control the amount
of spatial correlation (see Fig. 4). This affects the number
of required patterns, which is discussed next.

4.1. Reducing code ambiguity

In this section, we analyze the relationship between fre-
quency f and the number of patterns required to identify
projector pixels uniquely with a code sequence of black and
white values. Note that the pattern sequence is uncorrelated
temporally to maximize the amount of information.

In Fig. 5(a), we measure the number of patterns required
to disambiguate at least 99% of all pixels as frequency f
is varied. We consider HD projectors having 1920 × 1080
pixels. One can see that low frequency noise require more
patterns, Moreover, low frequency patterns often cause in-
terreflections when large white pattern regions are projected
in surface concavities and/or highly reflective materials.

Finally, note that this 1% of code duplicates usually cor-
respond to small groups of neighboring pixels that are yet to
be disambiguated. High frequency patterns, however, tend
to quickly produce unique codes locally but have duplicates
elsewhere.

4.2. Neighborhood code similarity

One important property of our patterns is the similarity
between neighboring codes. Fig. 5(b) presents the average
hamming code difference with respect to the distance be-
tween two neighboring pixels. Regardless of the frequency
used, the hamming difference increases gradually with dis-
tance until it reaches a negatively correlated maximum be-
fore decreasing to a constant level.

This correlation between neighboring codes makes it
easier for mismatch to happen between neighbors. How-
ever, it provides great robustness to pixel ratio variations,
since the averaging of a group of neighboring codes is still
highly correlated to each original blended codes. Also, this

(a)

(b)
Figure 5. (a) For HD images, the percentage of pixels having
unique codes while increasing the number of patterns. The curves
correspond to f ranging from 8 to 128 with curves on the right
corresponding to patterns of lower frequencies. Curves stop being
drawn if they reached 99%. (b) Average hamming distance be-
tween a pixel and its neighbors with increasing distance, for a code
length of 200 patterns. Each curve follows a sharp increase before
decreasing to a constant that is half the number of patterns. Pat-
terns of higher frequencies are not as correlated spatially (steeper
increase).

provides robustness to various local imaging problems like
defocussing or low pixel contrast.

Moreover, the lack of correlation between far pixels
helps provide very high robustness to scene discontinuities.
When a camera pixel observes a scene discontinuity, its in-
tensity is a blend of two uncorrelated codes. Thus, about
half the bits are the same in both codes and will be accu-
rately detected, making these two codes (and their neigh-
bors) much more likely to be matched than any other code.
In contrast, if the detected bits of two blended Gray code
patterns are not all from the same code, then the resulting
code may be completely unrelated.

5. Establishing pixel correspondence
This section deals with efficiently establishing the cor-

respondence between camera and projector pixels. We de-
signed our matching method so that it does not require any
form of prior calibration. This makes the matching more
difficult but much more flexible. For example, the camera
could be a non single view point fisheye and the projector



illumination could be bouncing off a convex surface. These
cases are common in multi-projection setups and are not
easily calibrated.

A number of random unstructured light patterns are gen-
erated at a preselected band-pass frequency interval. Those
patterns are projected, one at a time while a camera observe
the scene. A number of patterns N are projected, captured
by the camera, and then matched. Note that the number of
patterns can also be increased simultaneously to the match-
ing process until a desired quality has been obtained.

We first convert the gray images captured by the cam-
era to binary images for matching. The conversion is sim-
ply obtained by measuring if a pixel is above or below the
average of previous patterns over time. Let Φxy(i) be a
monotonic function modeling photometric distortion2, the
average image Īc in the camera, computed from all the dis-
torted intensities in the camera, remains a good delimiter
because it is well within Φxy(black) and Φxy(white) when,
for a camera pixel, the amount of black and white values
is reasonably balanced. Furthermore, the average works
well because band-pass noise patterns should not produce
big changes in ambient lighting due to interreflections.

Thus, as codes from unstructured light patterns have no
correlation to projector pixel position, the correspondence
problem is reduced to matching two sets of high dimen-
sional vectors to one another. UsingN patterns, we obtain a
N -dimensional binary vector for each pixel of both the cam-
era and the projector image. For HD images, each set has
around 1920 × 1080 = 2 million N -dimensional vectors.
For the remainder of the section, we assume that camera
pixels are matched to projector pixels, although matching
can be performed the other way around (or even both ways
simultaneously).

Matching is achieved efficiently using a high-
dimensional search method based on hashing of binary
vectors as described in [2, 8, 3]. All vectors are hashed by
selecting b-bits (hopefully noise free) out of the N code
bits. We use a key size b that should cover at least the
number S of pixels in the projector such that expected
number of codes hashed by a single key is around 1. In
practice, we use b = dlogSe. While the codes should
ideally match exactly (i.e. have the same key), there is in
practice some level of noise. Thus, the method proceeds
in k iterations, and selects a different set of bits for each
iteration.

For a given pixel, the probability P that it is matched
correctly after k iterations, in other words, that its key has
no bit errors can be modeled as:

P = 1− (1− (1− ρ)b)k (1)

where ρ is the probability that one bit is erroneous.
2Photometric distortion is usually a linear transformation including but

not limited to gamma factors, scene albedo, aperture [6].

Moreover, the number of iterations required to get a match
within confidence P can be computed as:

k =
log (1− P )

log (1− (1− ρ)b)
(2)

Several factors can increase the ρ value such as very
low contrast and aliasing which becomes worse for higher
frequency patterns and lower camera-projector pixel ratios.
Thus, ρ can vary locally in the camera image, as scene
albedo may change contrast for parts of the scene only, and
pixel ratio may also change, in the presence of slanted sur-
faces for instance. In practice, ρ is unknown and would
need to be estimated to get a good indicator of how many
iterations are required. The estimation of ρ is not addressed
in this paper however. Matching is simply performed until
no significant changes are detected.

Fig. 7(a) shows how adding code errors affects the con-
vergence. We used N = 200 noise patterns and flipped bits
according to different values of ρ. For instance, the best
match should on average have an optimal error of 20 bits
for ρ = 0.1. One can see that convergence is still achieved
for ρ ≤ 0.1, but that it becomes much slower for higher ρ
values. Since the number of iterations grows exponentially
with ρ, a value larger than about 0.3 will result in no con-
vergence.

In Sec. 5, we introduce matching heuristics that improve
convergence considerably (see Fig. 7(b)). However, (near)-
optimal matches do not guaranty quality matches. For in-
stance, when ρ = 0.3 is used, good matches give errors
that are not well separated from random codes (ρ = 0.5),
distributed at about half the number of bits N

2 .
During an iteration, the hash table can be unbalanced,

i.e. more that one code hashes in a single bin. The search
for the closest code in each bin can increase significantly
the matching time. In practice, the codes hashing to the
same bin could be stored in a data structure accelerating the
search. Instead, we chose first hashed code. Even if this
strategy does not choose the closest code, the time gained
can be used to perform another matching iteration. Typi-
cally, the execution time for one iteration is around one sec-
ond when matching an HD camera to an HD projector, and
the iteration time is doubled when applying the heuristics.

Matching heuristics

Usually, reconstruction methods take advantage of a pri-
ori knowledge about the scene in order to improve the re-
sults. One common assumption is that neighboring pix-
els have similar correspondences, thereby suggesting some
form of smoothing. Unfortunately, smoothing can intro-
duce errors at discontinuities or wherever the assumption
does not hold. In our case, we can use two simple heuris-
tics to take advantage of scene smoothness to get a dramatic
speedup in the matching convergence. One great advantage
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Figure 6. When a match is found (black solid line), two sim-
ple matching heuristics can be used : forward matching (blue
dashed lines) attempts to improve an existing match and backward
matching (red dot-dashed lines) attempts to improve neighborhood
matches.

of our smoothness heuristics is that no degradation of the
solution can ever occur, since they do not change the solu-
tion, only the time it takes to converge.

The heuristics are illustrated in Fig. 6. Forward match-
ing tests if a camera pixel can find a better match in the
neighborhood of its current match in the projector. This
heuristic refines current matches. Backward matching tests
the neighborhood of a camera pixel to check if they could
also match its corresponding projector pixel. This heuris-
tic tends to create new matches. The speedup is shown in
Fig. 7(a,b), where the convergence is plotted as a function
of the number of iterations needed with and without the use
of the heuristics.

6. Experiments
In this section, we present correspondence results on a

real scene using unstructured light patterns, and compare
to the results given by Gray codes as well as Phase-shift.
We show results for a scene that contains significant inter-
reflections, depth discontinuities and regions not in focus.
Results on scenes having other types of global illumination
effects such as sub-surface scattering and translucency are
also available online [1].

The scene is composed of two walls, a floor and a ball
(see Fig. 1). Results of all tested methods are shown in
Fig. 9. On the left, our method is shown to give good results
for high and low significant bits of the correspondence map.
A frequency f of 128 cycles per image was used, as can be
seen in the right image of Figure 4. In the middle, observe
that Gray codes fail to recover highly significant bits on the
floor near the walls because of indirect lighting. Phase-shift
results are presented at the right of Fig. 9, without applying
phase unwrapping. It also has difficulties near the walls and
features a wavy matching typical of direct coding methods.
This artifact gets worse when using a lower frequency.

Furthermore, we tested our method over a range of un-
structured pattern frequencies. The results for selected re-
gions are shown in Fig. 10. Notice that for regions not
lighted directly, random codes should be expected. This

(a)

(b)
Figure 7. For noisy data, matching convergence may take several
iterations. (a) Convergence of the hashing method with increas-
ing noise. The dashed lines represent the lowest code errors the
method should get on average (see text). (b) Convergence with in-
creasing noise becomes much better when applying backward and
forward matching heuristics at each iteration.

Figure 8. Average correspondence error as a function of pattern
frequency (4,8,...,256), for various vector lengths (40,120 and 200
bits). Observe that more bits give lower errors. Low frequency
patterns give slightly larger average errors because they required
even more than 200 bits to disambiguate all pixels locally. High
frequency patterns suffer from aliasing which makes convergence
harder to achieve.

is indeed what is observed behind the ball when using high
frequency patterns as in Fig. 10 (top right). High-frequency
patterns also improve matching on the floor near the wall.

Finally, using the results of our method as ground truth,
we measured errors by varying pattern frequencies and the
number of patterns used. Fig. 8 shows that errors are smaller



with more patterns and middle frequencies. Low frequen-
cies are not only unsuitable to reduce indirect lighting but
they also require more patterns to disambiguate codes lo-
cally. Very high frequencies (here 256) would be ideal to
reduce indirect lighting, but they are severely affected by
aliasing due to camera-projector resolution. The problem
of interreflection has been reduced to a problem of aliasing.

7. Conclusion

We presented a new approach to active reconstruction
that uses patterns not based on projector pixel position. The
only constraint imposed on these unstructured light patterns
is that a sequence of these patterns identifies every projec-
tor pixels by a unique code. The presented band-pass white
noise patterns are designed to reduce scene interreflections
and be robust to low camera-projector pixel ratios. Because
of the high number of patterns, the method is robust to cap-
ture errors and the matching algorithm provides very good
performance with respect to depth discontinuities.
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Figure 9. Results on our scene for all the methods tested : unstructured light patterns (left), Gray codes (middle) and Phase-shift (right).
For the first two methods, results are shown with only the high significant bits of the correspondence map (top) and only the low significant
bits (bottom). For Phase-shift, results are presented for different frequency on each row.

Figure 10. Correspondence from unstructured patterns at frequencies 8 (left), 32 (middle) and 128 (right). The effects of reducing indirect
lighting using higher frequency patterns are exposed on the edge of the ball and its shadow (top), and the corner of the walls (bottom).
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