Papyrus
http://hdl.handle.net/1866/12572
Abstract
This master concentrates on the reconstruction of a 3D model from multiple images. The 3D model is built with a hierarchical representation of voxels using an octree. A cube surrounding the object is calculated from the camera's positions. This cube contains all the voxels and it defines the position of the virtual cameras. The 3d model is initialized by a visual hull that is based on the uniform color of the images’ background. This visual hull is used to pre-carve the 3D model. Then a cost is calculated to evaluate the quality of each voxel as being on the surface of the object. This cost takes into account the similarity of the pixels from each images associated to a virtual camera. Finally a surface is calculated for each virtual camera using the SGM method that is based on the voxel cost. The SGM method takes the surrounding voxels into account when calculating the depth and this master presents a variation to this method where we take the previously excluded voxels into account. The excluded voxels coming from the initialization step or from the carving done by another virtual camera. The resulting surface is used to carve the voxel representation. This master presents an innovative combination of steps leading to the creation of a 3D model from a set of existing images or from a series of images capture one after another leading to a real-time creation of a 3D model.
Documents