Publications

Calibrage de caméra fisheye et estimation de la profondeur pour la navigation autonome

memoire » M.Sc.
Pierre-André Brousseau
Mots-clés: Vision par ordinateur , Calibrage de Caméra , Fisheye , Caméra axiale , Estimation de la profondeur , Estimation du mouvement , Navigation autonome , Computer Vision , Camera Calibration , Axial Camera , Depth Estimation , Autonomous Navigation
Date : 2019-08

Papyrus

http://hdl.handle.net/1866/23782

Résumé

Ce mémoire s’intéresse aux problématiques du calibrage de caméras grand angles et de l’estimation de la profondeur à partir d’une caméra unique, immobile ou en mouvement. Les travaux effectués se situent à l’intersection entre la vision 3D classique et les nouvelles méthodes par apprentissage profond dans le domaine de la navigation autonome. Ils visent à permettre la détection d’obstacles par un drone en mouvement muni d’une seule caméra à très grand angle de vue. D’abord, une nouvelle méthode de calibrage est proposée pour les caméras fisheyes à très grand angle de vue par calibrage planaire à correspondances denses obtenues par lumière structurée qui peuvent être modélisée par un ensemble de caméras génériques virtuelles centrales. Nous démontrons que cette approche permet de modéliser directement des caméras axiales, et validons sur des données synthétiques et réelles. Ensuite, une méthode est proposée pour estimer la profondeur à partir d’une seule image, à partir uniquement des indices de profondeurs forts, les jonctions en T. Nous démontrons que les méthodes par apprentissage profond sont susceptibles d’apprendre les biais de leurs ensembles de données et présentent des lacunes d’invariance. Finalement, nous proposons une méthode pour estimer la profondeur à partir d’une caméra en mouvement libre à 6 degrés de liberté. Ceci passe par le calibrage de la caméra fisheye sur le drone, l’odométrie visuelle et la résolution de la profondeur. Les méthodes proposées permettent la détection d’obstacle pour un drone.

Documents